
NetCDF User's Guide

An Interface for Data Access
Version 2.4

February 1996

Russ Rew, Glenn Davis, Steve Emmerson, and Harvey Davies
Unidata Program Center

Copyright c
 1996 University Corporation for Atmospheric Research, Boulder, Colorado.

Permission is granted to make and distribute verbatim copies of this manual provided that the

copyright notice and these paragraphs are preserved on all copies. The software and any accom-

panying written materials are provided \as is" without warranty of any kind. UCAR expressly

disclaims all warranties of any kind, either expressed or implied, including but not limited to the

implied warranties of merchantability and �tness for a particular purpose.

The Unidata Program Center is managed by the University Corporation for Atmospheric Research

and sponsored by the National Science Foundation. Any opinions, �ndings, conclusions, or recom-

mendations expressed in this publication are those of the author(s) and do not necessarily re
ect

the views of the National Science Foundation.

Mention of any commercial company or product in this document does not constitute an endorse-

ment by the Unidata Program Center. Unidata does not authorize any use of information from

this publication for advertising or publicity purposes.

Foreword 1

Foreword

Unidata is a National Science Foundation-sponsored program empowering U.S. universities,

through innovative applications of computers and networks, to make the best use of atmospheric

and related data for enhancing education and research. For analyzing and displaying such data, the

Unidata Program Center o�ers universities several supported software packages developed by other

organizations, including the University of Wisconsin, Purdue University, NASA, and the National

Weather Service. Underlying these is a Unidata-developed system for acquiring and managing data

in real time, making practical the Unidata principle that each university should acquire and manage

its own data holdings as local requirements dictate. It is signi�cant that the Unidata program has

no data center | the management of data is a \distributed" function.

The Network Common Data Form (netCDF) software described in this guide was originally

intended to provide a common data access method for the various Unidata applications. These

deal with a variety of data types that encompass single-point observations, time series, regularly-

spaced grids, and satellite or radar images.

The netCDF software functions as an I/O library, callable from C or FORTRAN, which stores

and retrieves data in self-describing, machine-independent �les. Each netCDF �le can contain an

unlimited number of multi-dimensional, named variables (with di�ering types that include integers,

reals, characters, bytes, etc.), and each variable may be accompanied by ancillary data, such as

units of measure or descriptive text. The interface includes a method for appending data to existing

netCDF �les in prescribed ways, functionality that is not unlike a (�xed length) record structure.

However, the netCDF library also allows direct-access storage and retrieval of data by variable

name and index and therefore is useful only for disk-resident (or memory-resident) �les.

NetCDF access has been implemented in about half of Unidata's software, so far, and it is

planned that such commonality will extend across all Unidata applications in order to:

� Facilitate the use of common data �les by distinct applications.

� Permit data �les to be transported between or shared by dissimilar computers transparently,

i.e., without translation.

� Reduce the programming e�ort usually spent interpreting formats in a way that is equally

e�ective for FORTRAN and C programmers.

� Reduce errors arising from misinterpreting data and ancillary data.

� Facilitate using output from one application as input to another.

� Establish an interface standard which simpli�es the inclusion of new software into the Unidata

system.

A measure of success has been achieved. NetCDF is now in use on computing platforms that

range from CRAYs to Personal Computers and include most UNIX-based workstations. It can be

used to create a complex dataset on one computer (say in FORTRAN) and retrieve that same self-

describing dataset on another computer (say in C) without intermediate translations | netCDF

2 NetCDF 2.4 User's Guide

�les can be transferred across a network, or they can be accessed remotely using a suitable network

�le system.

Because we believe that the use of netCDF access in non-Unidata software will bene�t Unidata's

primary constituency | such use may result in more options for analyzing and displaying Unidata

information | the netCDF library is distributed without licensing or other signi�cant restrictions,

and current versions can be obtained via anonymous FTP. Apparently the software has been well

received by a wide range of institutions beyond the atmospheric science community, and a substan-

tial number of public domain and commercial data analysis systems can now accept netCDF �les

as input.

Several organizations have adopted netCDF as a data access standard, and there is an e�ort

underway at the National Center for Supercomputer Applications (NCSA, which is associated with

the University of Illinois at Urbana-Champaign) to support the netCDF programming interfaces

as a means to store and retrieve data in \HDF �les," i.e., in the format used by the popular NCSA

tools. We have encouraged and cooperated with these e�orts.

Questions occasionally arise about the level of support provided for the netCDF software.

Unidata's formal position, stated in the copyright notice which accompanies the netCDF library, is

that the software is provided \as is". In practice, the software is updated from time to time, and

Unidata intends to continue making improvements for the foreseeable future. Because Unidata's

mission is to serve geoscientists at U.S. universities, problems reported by that community neces-

sarily receive the greatest attention.

We hope the reader will �nd the software useful and will give us feedback on its application as

well as suggestions for its improvement.

David Fulker
Unidata Program Center Director
University Corporation for Atmospheric Research

Summary 3

Summary

The purpose of the Network Common Data Form (netCDF) interface is to allow you to create,

access, and share array-oriented data in a form that is self-describing and network-transparent.

\Self-describing" means that a �le includes information de�ning the data it contains. \Network-

transparent" means that a �le is represented in a form that can be accessed by computers with

di�erent ways of storing integers, characters, and
oating-point numbers. Using the netCDF inter-

face for creating new datasets makes the data portable. Using the netCDF interface in software for

data access, management, analysis, and display can make the software more generally useful.

The netCDF software includes C and FORTRAN interfaces for accessing netCDF data. These

libraries are available for many common computing platforms. C++ and perl interfaces for netCDF

data access are also available from Unidata. The community of netCDF users has contributed

ports of the software to additional platforms and interfaces for other programming languages as

well. Source code for netCDF software libraries is freely available to encourage the sharing of both

array-oriented data and the software that makes the data useful.

This User's Guide presents the netCDF data model, but documents only the C and FORTRAN

interfaces. Separate documents are available for C++ and perl interfaces. Reference documentation

for UNIX systems, in the form of UNIX `man' pages for the C and FORTRAN interfaces, is available

with the netCDF software. Extensive additional information about netCDF, including pointers to

other software that works with netCDF data, is available at the netCDF World Wide Web site

(`http://www.unidata.ucar.edu/packages/netcdf/').

4 NetCDF 2.4 User's Guide

Chapter 1: Introduction 5

1 Introduction

1.1 The NetCDF Interface

The Network Common Data Form, or netCDF, is an interface to a library of data access functions

for storing and retrieving data in the form of arrays. An array is an n-dimensional (where n is

0, 1, 2, : : :) rectangular structure containing items which all have the same data type (e.g. 8-bit

character, 32-bit integer). A scalar (simple single value) is a 0-dimensional array.

NetCDF is an abstraction that supports a view of data as a collection of self-describing, network-

transparent objects that can be accessed through a simple interface. Array values may be accessed

directly, without knowing details of how the data are stored. Auxiliary information about the

data, such as what units are used, may be stored with the data. Generic utilities and application

programs can access netCDF �les and transform, combine, analyze, or display speci�ed �elds of

the data. The development of such applications may lead to improved accessibility of data and

improved reusability of software for array-oriented data management, analysis, and display.

The netCDF software implements an abstract data type, which means that all operations to

access and manipulate data in a netCDF �le must use only the set of functions provided by the

interface. The representation of the data is hidden from applications that use the interface, so

that how the data are stored could be changed without a�ecting existing programs. The physical

representation of netCDF data is designed to be independent of the computer on which the data

were written.

Unidata supports the netCDF interfaces for C, FORTRAN, C++, and perl and for various UNIX

operating systems. The software is also ported and tested on a few other operating systems, with

assistance from users with access to these systems, before each major release. Unidata's netCDF

software is freely available via FTP to encourage its widespread use.

1.2 NetCDF is Not a DatabaseManagement System

Why not use an existing database management system for storing array-oriented data? Re-

lational database software is not suitable for the kinds of data access supported by the netCDF

interface.

First, existing database systems that support the relational model do not support multidimen-

sional objects (arrays) as a basic unit of data access. Representing arrays as relations makes some

useful kinds of data access awkward and provides little support for the abstractions of multidimen-

sional data and coordinate systems. A quite di�erent data model is needed for array-oriented data

to facilitate its retrieval, modi�cation, mathematical manipulation and visualization.

Related to this is a second problem with general-purpose database systems: their poor perfor-

mance on large arrays. Collections of satellite images, scienti�c model outputs and long-term global

6 NetCDF 2.4 User's Guide

weather observations are beyond the capabilities of most database systems to organize and index

for e�cient retrieval.

Finally, general-purpose database systems provide, at signi�cant cost in terms of both resources

and access performance, many facilities that are not needed in the analysis, management, and

display of array-oriented data. For example, elaborate update facilities, audit trails, report for-

matting, and mechanisms designed for transaction-processing are unnecessary for most scienti�c

applications.

1.3 File Format

To achieve network-transparency (machine-independence), netCDF is implemented in terms of

XDR (eXternal Data Representation, see `ftp://ds.internic.net/rfc/rfc1832.txt'), a pro-

posed standard protocol for describing and encoding data. XDR provides encoding of data into

machine-independent sequences of bits. XDR has been implemented on a wide variety of comput-

ers, by assuming only that eight-bit bytes can be encoded and decoded in a consistent way. XDR

uses the IEEE
oating-point standard for
oating-point data.

The overall structure of netCDF �les is described in Chapter 9 [NetCDF File Structure and

Performance], page 121.

The details of the format are described in Appendix B [File Format Speci�cation], page 143.

However, users are discouraged from using the format speci�cation to develop independent low-level

software for reading and writing netCDF �les, because this could lead to compatibility problems

when the format is modi�ed.

1.4 What about Performance?

One of the goals of netCDF is to support e�cient access to small subsets of large datasets. To

support this goal, netCDF uses direct access rather than sequential access. This can be much more

e�cient when data is read in a di�erent order from that in which it was written.

The amount of XDR overhead depends on many factors, including the data type, the type of

computer, the granularity of data access, and how well the implementation has been tuned to the

computer on which it is run. This overhead is typically small in comparison to the overall resources

used by an application. In any case, the overhead of the XDR layer is usually a reasonable price

to pay for portable, network-transparent data access.

Although e�ciency of data access has been an important concern in designing and implementing

netCDF, it is still possible to use the netCDF interface to access data in ine�cient ways: for

example, by requesting a slice of data that requires a single value from each record. Advice on how

to use the interface e�ciently is provided in Chapter 9 [NetCDF File Structure and Performance],

page 121.

Chapter 1: Introduction 7

1.5 Is NetCDF a Good Archive Format?

NetCDF can be used as a general-purpose archive format for storing arrays. Compression of data

is possible with netCDF (e.g., using arrays of eight-bit or 16-bit integers to encode low-resolution

oating-point numbers instead of arrays of 32-bit numbers), but the current version of netCDF

was not designed to achieve optimal compression of data. Hence, using netCDF may require more

space than special-purpose archive formats that exploit knowledge of particular characteristics of

speci�c datasets.

1.6 Creating Self-Describing Data conforming to Conventions

The mere use of netCDF is not su�cient to make data \self-describing" and meaningful to both

humans and machines. The names of variables and dimensions should be meaningful and conform

to any relevant conventions. Dimensions should have corresponding coordinate variables where

sensible.

Attributes play a vital role in providing ancillary information. It is important to use all the

relevant standard attributes using the relevant conventions. Section 8.1 [Attribute Conventions],

page 101, describes reserved attributes (used by the netCDF library) and attribute conventions for

generic application software.

A number of groups have de�ned their own additional conventions and styles for netCDF data.

Descriptions of these conventions, as well as examples incorporating them can be accessed from the

netCDFConventions site (`http://www.unidata.ucar.edu/packages/netcdf/conventions.html').

These conventions should be used where suitable. Additional conventions are often needed for

local use. These should be contributed to the above netCDF Conventions site if likely to interest

other users in similar areas.

1.7 Background and Evolution of the NetCDF Interface

The development of the netCDF interface began with a modest goal related to Unidata's needs:

to provide a common interface between Unidata applications and ingested real-time meteorological

data. Since Unidata software was intended to run on multiple hardware platforms with access from

both C and FORTRAN, achieving Unidata's goals had the potential for providing a package that

was useful in a broader context. By making the package widely available and collaborating with

other organizations with similar needs, we hoped to improve the then current situation in which

software for scienti�c data access was only rarely reused by others in the same discipline and almost

never reused between disciplines (Fulker, 1988).

Important concepts employed in the netCDF software originated in a paper (Treinish and Gough,

1987) that described data-access software developed at the NASA Goddard National Space Science

Data Center (NSSDC). The interface provided by this software was called the Common Data

8 NetCDF 2.4 User's Guide

Format (CDF). The NASA CDF was originally developed as a platform-speci�c FORTRAN library

to support an abstraction for storing arrays.

The NASA CDF package had been used for many di�erent kinds of data in an extensive collection

of applications. It had the virtues of simplicity (only 13 subroutines), independence from storage

format, generality, ability to support logical user views of data, and support for generic applications.

Unidata held a workshop on CDF in Boulder in August 1987. We proposed exploring the possi-

bility of collaborating with NASA to extend the CDF FORTRAN interface, to de�ne a C interface,

and to permit the access of data aggregates with a single call, while maintaining compatibility with

the existing NASA interface.

Independently, Dave Raymond at the New Mexico Institute of Mining and Technology had

developed a package of C software for UNIX that supported sequential access to self-describing

array-oriented data and a \pipes and �lters" (or \data
ow") approach to processing, analyzing,

and displaying the data. This package also used the \CommonData Format" name, later changed to

C-Based Analysis and Display System (CANDIS). Unidata learned of Raymond's work (Raymond,

1988), and incorporated some of his ideas, such as the use of named dimensions and variables with

di�ering shapes in a single data object, into the Unidata netCDF interface.

In early 1988, Glenn Davis of Unidata developed a prototype netCDF package in C that was

layered on XDR. This prototype proved that a single-�le, network-transparent implementation of

the CDF interface could be achieved at acceptable cost and that the resulting programs could be

implemented on both UNIX and VMS systems. However, it also demonstrated that providing a

small, portable, and NASA CDF-compatible FORTRAN interface with the desired generality was

not practical. NASA's CDF and Unidata's netCDF have since evolved separately, but recent CDF

versions share many characteristics with netCDF.

In early 1988, Joe Fahle of SeaSpace, Inc. (a commercial software development �rm in San

Diego, California), a participant in the 1987 Unidata CDF workshop, independently developed a

CDF package in C that extended the NASA CDF interface in several important ways (Fahle, 1989).

Like Raymond's package, the SeaSpace CDF software permitted variables with unrelated shapes

to be included in the same data object and permitted a general form of access to multidimensional

arrays. Fahle's implementation was used at SeaSpace as the intermediate form of storage for a

variety of steps in their image-processing system. This interface and format have subsequently

evolved into the Terascan data format.

After studying Fahle's interface, we concluded that it solved many of the problems we had

identi�ed in trying to stretch the NASA interface to our purposes. In August 1988, we convened

a small workshop to agree on a Unidata netCDF interface, and to resolve remaining open issues.

Attending were Joe Fahle of SeaSpace, Michael Gough of Apple (an author of the NASA CDF

software), Angel Li of the University of Miami (who had implemented our prototype netCDF

software on VMS and was a potential user), and Unidata systems development sta�. Consensus

was reached at the workshop after some further simpli�cations were discovered. A document

Chapter 1: Introduction 9

incorporating the results of the workshop into a proposed Unidata netCDF interface speci�cation

was distributed widely for comments before Glenn Davis and Russ Rew implemented the �rst

version of the software. Comparison with other data-access interfaces and experience using netCDF

are discussed in (Rew and Davis, 1990a), (Rew and Davis, 1990b), (Jenter and Signell, 1992), and

(Brown, Folk, Goucher, and Rew, 1993).

In October 1991, we announced version 2.0 of the netCDF software distribution. Slight mod-

i�cations to the C interface (declaring dimension sizes to be long rather than int) improved the

usability of netCDF on inexpensive platforms such as MS-DOS computers, without requiring re-

compilation on other platforms. This change to the interface required no changes to the associated

�le format.

Release of netCDF version 2.3.2 in June 1993 preserved the same �le format but added single

call access to records, optimizations for accessing cross-sections involving non-contiguous data, sub-

sampling along speci�ed dimensions (using `strides'), accessing non-contiguous data (using `mapped

array sections'), improvements to the ncdump and ncgen utilities, and an experimental C++ inter-

face.

1.8 What's New Since the Previous Release?

This Guide documents the February 1996 release of netCDF 2.4, which preserves the same �le

format as earlier versions but includes the following changes from version 2.3.2:

� support for new platforms;

� signi�cant Cray optimizations;

� improved ease of installation;

� revised documentation;

� additions to the C++ interface; and

� �xes for reported bugs.

In order to support netCDF on new platforms where the size of a long is greater than the size of

an int, the new release fully integrates the use of the nclong typedef into the C and C++ interfaces.

Additions and changes were made to the C++ interface to make it easier to step through records,

coordinate concurrent access to netCDF �les, and access single records.

1.9 Limitations of NetCDF

The netCDF data model is widely applicable to data that can be organized into a collection

of named array variables with named attributes, but there are some important limitations to the

model and its implementation in software.

The data model does not support nested data structures. The netCDF interface provides little

help in representing trees, nested arrays, or other recursive data structures, mostly because of

10 NetCDF 2.4 User's Guide

the requirement that the FORTRAN interface should be able to read and write any netCDF

dataset. Through use of indirection and conventions it is possible to represent some kinds of nested

structures, but the result falls short of the netCDF goal of \self-describing data".

A signi�cant limitation of the current implementation is that only one unlimited dimension is

permitted for each netCDF dataset. Multiple variables can share an unlimited dimension, but

then they must all grow together. Hence the netCDF model does not cater for variables with

several changeable dimension sizes. It is also not possible to have di�erent changeable dimensions

in di�erent variables within the same �le. Variables that have non-rectangular shapes (e.g. \ragged

arrays") cannot be represented conveniently.

The interface does not provide any facilities speci�c to coordinate variables, such as a using

them to specify position along dimensions as an alternative to normal indexing. There are no

facilities yet for packing data in bit �elds (XDR lacks this capability). Hence an array of 9-bit data

must be stored in 16-bit arrays to be conveniently accessed. Dataset sizes are currently limited to

2 Gigabytes, because of the use of 32-bit signed o�sets.

Finally, the current implementation limits concurrent access to a netCDF �le. One writer and

multiple readers may access data in a single �le simultaneously, but there is no support for multiple

concurrent writers.

1.10 Future Plans for NetCDF

XDR is to be replaced by new software under development. This will provide added functionality

and greater e�ciency.

Current plans are to add transparent data packing, improved concurrency support, access to

data by key or coordinate value, support for e�cient structure changes (e.g. new variables and

attributes), new data types, and the addition of type-safe C and FORTRAN interfaces for accessing

data as a speci�c type, independent of how it is stored. Other desirable extensions that may be

added, if practical, include support for pointers to data cross-sections in other �les, nested arrays

(allowing representation of ragged arrays, trees and other recursive data structures), ability to

access datasets larger than 2 Gigabytes, and multiple unlimited dimensions.

References

1. Brown, S. A, M. Folk, G. Goucher, and R. Rew, \Software for Portable Scienti�c Data Man-

agement," Computers in Physics, American Institute of Physics, Vol. 7, No. 3, May/June

1993.

2. Fahle, J., TeraScan Applications Programming Interface, SeaSpace, San Diego, California,

1989.

Chapter 1: Introduction 11

3. Fulker, D. W., \The netCDF: Self-Describing, Portable Files|a Basis for `Plug-Compatible'

Software Modules Connectable by Networks," ICSU Workshop on Geophysical Informatics,

Moscow, USSR, August 1988.

4. Fulker, D. W., \Unidata Strawman for Storing Earth-Referencing Data," Seventh International

Conference on Interactive Information and Processing Systems for Meteorology, Oceanography,

and Hydrology, New Orleans, La., American Meteorology Society, January 1991.

5. Gough, M. L., NSSDC CDF Implementer's Guide (DEC VAX/VMS) Version 1.1, National

Space Science Data Center, 88-17, NASA/Goddard Space Flight Center, 1988.

6. Jenter, H. L. and R. P. Signell, \NetCDF: A Freely-Available Software-Solution to Data-Access

Problems for Numerical Modelers," Proceedings of the American Society of Civil Engineers

Conference on Estuarine and Coastal Modeling, Tampa, Florida, 1992.

7. Raymond, D. J., \A C Language-Based Modular System for Analyzing and Displaying Gridded

Numerical Data," Journal of Atmospheric and Oceanic Technology, 5, 501-511, 1988.

8. Rew, R. K. and G. P. Davis, \The Unidata netCDF: Software for Scienti�c Data Access," Sixth

International Conference on Interactive Information and Processing Systems for Meteorology,

Oceanography, and Hydrology, Anaheim, California, American Meteorology Society, February

1990.

9. Rew, R. K. and G. P. Davis, \NetCDF: An Interface for Scienti�c Data Access," Computer

Graphics and Applications, IEEE, pp. 76-82, July 1990.

10. Treinish, L. A. and M. L. Gough, \A Software Package for the Data Independent Management

of Multi-Dimensional Data," EOS Transactions, American Geophysical Union, 68, 633-635,

1987.

12 NetCDF 2.4 User's Guide

Chapter 2: Components of a NetCDF File 13

2 Components of a NetCDFFile

2.1 The NetCDFData Model

A netCDF �le contains dimensions, variables, and attributes, which all have both a name and

an ID number by which they are identi�ed. These components can be used together to capture

the meaning of data and relations among data �elds in an array-oriented dataset. The netCDF

library allows simultaneous access to multiple netCDF �les which are identi�ed by �le ID numbers,

in addition to ordinary �le names.

A netCDF �le contains a symbol table for variables containing their name, data type, rank

(number of dimensions), dimensions, and starting disk address. Each element is stored at a disk

address which is a linear function of the array indices (subscripts) by which it is identi�ed. This

obviates the need for these indices to be stored, either as �elds within records, or in an index to

the records (as in a relational database). This provides a fast and compact storage method, unless

there are many missing values.

2.1.1 Naming Conventions

The names of dimensions, variables and attributes consist of arbitrary sequences of alphanu-

meric characters (as well as underscore `_' and hyphen `-'), beginning with a letter or underscore.

(However names commencing with underscore are reserved for system use.) Case is signi�cant in

netCDF names.

2.1.2 network Common Data Form Language (CDL)

We will use a small netCDF example to illustrate the concepts of the netCDF data model. This

includes dimensions, variables, and attributes. The notation used to describe this simple netCDF

object is called CDL (network Common Data form Language), which provides a convenient way of

describing netCDF �les. The netCDF system includes utilities for producing human-oriented CDL

text �les from binary netCDF �les and vice versa.

14 NetCDF 2.4 User's Guide

netcdf example_1 { // example of CDL notation for a netCDF file

dimensions: // dimension names and sizes are declared first

lat = 5, lon = 10, level = 4, time = unlimited;

variables: // variable types, names, shapes, attributes

float temp(time,level,lat,lon);

temp:long_name = "temperature";

temp:units = "celsius";

float rh(time,lat,lon);

rh:long_name = "relative humidity";

rh:valid_range = 0.0, 1.0; // min and max

int lat(lat), lon(lon), level(level);

lat:units = "degrees_north";

lon:units = "degrees_east";

level:units = "millibars";

short time(time);

time:units = "hours since 1996-1-1";

// global attributes

:source = "Fictional Model Output";

data: // optional data assignments

level = 1000, 850, 700, 500;

lat = 20, 30, 40, 50, 60;

lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;

time = 12;

rh =.5,.2,.4,.2,.3,.2,.4,.5,.6,.7,

.1,.3,.1,.1,.1,.1,.5,.7,.8,.8,

.1,.2,.2,.2,.2,.5,.7,.8,.9,.9,

.1,.2,.3,.3,.3,.3,.7,.8,.9,.9,

0,.1,.2,.4,.4,.4,.4,.7,.9,.9;

}

The CDL notation for a netCDF �le can be generated automatically by using ncdump, a utility

program described later (see Section 10.5 [ncdump], page 130). Another netCDF utility, ncgen,

generates a netCDF �le (or optionally C or FORTRAN source code containing calls needed to

produce a netCDF �le) from CDL input (see Section 10.4 [ncgen], page 129).

The CDL notation is simple and largely self-explanatory. It will be explained more fully as we

describe the components of a netCDF �le. For now, note that CDL statements are terminated by a

semicolon. Spaces, tabs, and newlines can be used freely for readability. Comments in CDL follow

the characters `//' on any line. A CDL description of a netCDF �le takes the form

netCDF name {

dimensions: : : :

variables: : : :

data: : : :

}

Chapter 2: Components of a NetCDF File 15

where the name is used only as a default in constructing �le names by the ncgen utility. The CDL

description consists of three optional parts, introduced by the keywords dimensions, variables,

and data. NetCDF dimension declarations appear after the dimensions keyword, netCDF variables

and attributes are de�ned after the variables keyword, and variable data assignments appear after

the data keyword.

2.2 Dimensions

A dimension may be used to represent a real physical dimension, for example, time, latitude,

longitude, or height. A dimension might also be used to index other quantities, for example station

or model-run-number.

A netCDF dimension has both a name and a size. A dimension size is an arbitrary positive

integer, except that one dimension in a netCDF �le can have the size UNLIMITED.

Such a dimension is called the unlimited dimension or the record dimension. A variable with

an unlimited dimension can grow to any length along that dimension. The unlimited dimension

index is like a record number in conventional record-oriented �les. A netCDF �le can have at most

one unlimited dimension, but need not have any. If a variable has an unlimited dimension, that

dimension must be the most signi�cant (slowest changing) one. Thus any unlimited dimension

must be the �rst dimension in a CDL shape (and �rst in C declarations, but last in FORTRAN).

CDL dimension declarations may appear on one or more lines following the CDL keyword

dimensions. Multiple dimension declarations on the same line may be separated by commas.

Each declaration is of the form name = size.

There are four dimensions in the above example: lat, lon, level, and time. The �rst three are

assigned �xed sizes; time is assigned the size UNLIMITED, which means it is the unlimited dimension.

The basic unit of named data in a netCDF �le is a variable. When a variable is de�ned, its

shape is speci�ed as a list of dimensions. These dimensions must already exist.

The number of dimensions is called the rank (a.k.a. dimensionality). A scalar variable has rank

0, a vector has rank 1 and a matrix has rank 2.

It is possible to use the same dimension more than once in specifying a variable shape. For

example, correlation(instrument, instrument) could be a correlation matrix giving correla-

tions between measurements using di�erent instruments. But data whose dimensions correspond

to those of physical space/time should have a shape comprising di�erent dimensions, even if some

of these have the same size.

2.3 Variables

Variables are used to store the bulk of the data in a netCDF �le. A variable represents an array

of values of the same type. A scalar value is treated as a 0-dimensional array. A variable has a

16 NetCDF 2.4 User's Guide

name, a data type, and a shape described by its list of dimensions speci�ed when the variable is

created. A variable may also have associated attributes, which may be added, deleted or changed

after the variable is created.

A variable data type is one of a small set of netCDF types that have the names NC_BYTE,

NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE in the C interface and the corresponding

names NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE in the FORTRAN interface. In

the CDL notation, these types are given the simpler names byte, char, short, long, float, and

double. int may be used as a synonym for long and real may be used as a synonym for float in

the CDL notation. We will postpone a discussion of the exact meaning of each of the types until

Section 3.1 [NetCDF Data Types], page 21.

CDL variable declarations appear after the variables keyword in a CDL unit. They have the

form

type variable name (dim name 1, dim name 2, : : :) ;

for variables with dimensions, or

type variable name ;

for scalar variables.

In the above CDL example there are six variables. As discussed below, four of these are coordi-

nate variables. The remaining variables (sometimes called primary variables), temp and rh, contain

what is usually thought of as the data. Each of these variables has the unlimited dimension time

as its �rst dimension, so they are called record variables. A variable that is not a record variable

has a �xed size (number of data values) given by the product of its dimension sizes. The size of a

record variable is also the product of its dimension sizes, but in this case the product is variable

because it involves the size of the unlimited dimension, which can vary. The size of the unlimited

dimension is the number of records.

2.3.1 Coordinate Variables

It is legal for a variable to have the same name as a dimension. Such variables have no special

meaning to the netCDF library. However there is a convention that such variables should be treated

in a special way by software using this library.

A variable with the same name as a dimension is called a coordinate variable. It typically

de�nes a physical coordinate corresponding to that dimension. The above CDL example includes

the coordinate variables lat, lon, level and time, de�ned as follows:

int lat(lat), lon(lon), level(level);

short time(time);

: : :

data:

level = 1000, 850, 700, 500;

lat = 20, 30, 40, 50, 60;

Chapter 2: Components of a NetCDF File 17

lon = -160,-140,-118,-96,-84,-52,-45,-35,-25,-15;

time = 12;

These de�ne the latitudes, longitudes, barometric pressures and times corresponding to positions

along these dimensions. Thus there is data at altitudes corresponding to 1000, 850, 700 and 500

millibars; and at latitudes 20, 30, 40, 50 and 60 degrees north. Note that each coordinate variable

is a vector and has a shape consisting of just the dimension with the same name.

A position along a dimension can be speci�ed using an index. This is an integer with a minimum

value of 0 for C programs and 1 for FORTRAN. Thus the 700 millibar level would have an index

value of 2 for C and 3 for FORTRAN.

If a dimension has a corresponding coordinate variable, then this provides an alternative, and

often more convenient, means of specifying position along it. Current application packages that

make use of coordinate variables commonly assume they are numeric vectors and strictly monotonic

(all values are di�erent and either increasing or decreasing). There are plans to de�ne more general

conventions to allow such things as text labels as values of coordinate variables.

2.4 Attributes

NetCDF attributes are used to store data about the data (ancillary data or metadata), similar

in many ways to the information stored in data dictionaries and schema in conventional database

systems. Most attributes provide information about a speci�c variable. These are identi�ed by the

name (or ID) of that variable, together with the name of the attribute.

Some attributes provide information about the �le as a whole and are called global attributes.

These are identi�ed by the attribute name together with a blank variable name (in CDL) or a

special null variable ID (in C or Fortran).

An attribute has an associated variable (null for a global attribute), a name, a data type, a

length, and a value. The current version treats all attributes as vectors; scalar values are treated

as single-element vectors.

Conventional attribute names should be used where applicable. New names should be as mean-

ingful as possible.

The type of an attribute is speci�ed when it is created. The types permitted for attributes are

the same as the netCDF data types for variables. Attributes with the same name for di�erent

variables should sometimes be of di�erent types. For example, the attribute valid_max specifying

the maximum valid data value for a variable of type long should be of type long, whereas the

attribute valid_max for a variable of type double should instead be of type double.

Attributes are more dynamic than variables or dimensions; they can be deleted and have their

type, length, and values changed after they are created, whereas the netCDF interface provides no

way to delete a variable or to change its type or shape.

18 NetCDF 2.4 User's Guide

The CDL notation for de�ning an attribute is

variable name:attribute name = list of values ;

for a variable attribute, or

:attribute name = list of values ;

for a global attribute. The type and length of each attribute are not explicitly declared in CDL;

they are derived from the values assigned to the attribute. All values of an attribute must be of the

same type. The notation used for constant values of the various netCDF types is discussed later

(see Section 10.3 [CDL Notation for Data Constants], page 128).

In the netCDF example (see Chapter 2 [CDL example], page 13), units is an attribute for

the variable lat that has a 13-character array value `degrees_north'. And valid_range is an

attribute for the variable rh that has length 2 and values `0.0' and `1.0'.

One global attribute|source|is de�ned for the example netCDF �le. This is a character

array intended for documenting the data. Actual netCDF �les might have more global attributes

to document the origin, history, conventions, and other characteristics of the �le as a whole.

Most generic applications that process netCDF �les assume standard attribute conventions and

it is strongly recommended that these be followed unless there are good reasons for not doing so.

See Section 8.1 [Attribute Conventions], page 101, for information about units, long_name, valid_

min, valid_max, valid_range, scale_factor, add_offset, _FillValue, and other conventional

attributes.

Attributes may be added to a netCDF �le long after it is �rst de�ned, so you don't have to

anticipate all potentially useful attributes. However adding new attributes to an existing �le can

incur the same expense as copying the �le. See Chapter 9 [NetCDFFile Structure and Performance],

page 121, for a more extensive discussion.

2.5 Di�erences between Attributes and Variables

In contrast to variables, which are intended for bulk data, attributes are intended for ancillary

data, or information about the data. The total amount of ancillary data associated with a netCDF

object, and stored in its attributes, is typically small enough to be memory-resident. However

variables are often too large to entirely �t in memory and must be split into sections for processing.

Another di�erence between attributes and variables is that variables may be multidimensional.

Attributes are all either scalars (single-valued) or vectors (a single, �xed dimension).

Variables are created with a name, type, and shape before they are assigned data values, so a

variable may exist with no values. The value of an attribute must be speci�ed when it is created,

so no attribute ever exists without a value.

A variable may have attributes, but an attribute cannot have attributes. Attributes assigned

to variables may have the same units as the variable (for example, valid_range) or have no units

Chapter 2: Components of a NetCDF File 19

(for example, scale_factor). If you want to store data that requires units di�erent from those

of the associated variable, it is better to use a variable than an attribute. More generally, if data

require ancillary data to describe them, are multidimensional, require any of the de�ned netCDF

dimensions to index their values, or require a signi�cant amount of storage, that data should be

represented using variables rather than attributes.

20 NetCDF 2.4 User's Guide

Chapter 3: Data 21

3 Data

This chapter discusses the six primitive netCDF data types, the kinds of data access supported

by the netCDF interface, and how data structures other than arrays may be implemented in a

netCDF �le.

3.1 NetCDFData Types

The current set of primitive types supported by the netCDF interface are:

character

8-bit characters intended for representing text.

byte 8-bit signed or unsigned integers (see discussion below).

short 16-bit signed integers.

long 32-bit signed integers.

float 32-bit IEEE
oating-point.

double 64-bit IEEE
oating-point.

Except for the added byte and the lack of unsigned types, netCDF supports the same primitive

data types as C. The names for the primitive data types are reserved words in CDL, so the names

of variables, dimensions, and attributes must not be type names.

It is currently possible to interpret byte data as either signed (-128 to 127) or unsigned (0

to 255). The current version of the netCDF library simply reads and writes 8-bit bytes without

needing to know whether they are signed. However, the addition of packed data in a future version

of netCDF will require arithmetic operations on values, and for that purpose byte data will be

interpreted as signed.

These types were chosen because they are familiar to C and FORTRAN programmers, they have

well-de�ned external representations independent of any particular computers (using XDR), and

they are su�cient for providing a reasonably wide range of trade-o�s between data precision and

number of bits required for each datum. See Section 7.1 [Variables], page 60, for the correspondence

between netCDF data types and the data types of a language.

There are plans for new data types, including 64-bit integers and n-bit packing.

3.2 Data Access

To access (read or write) netCDF data you specify an open netCDF �le, a netCDF variable, and

information (e.g. indices) identifying elements of the variable. In addition, the netCDF interface

supports a form of record-oriented data access.

22 NetCDF 2.4 User's Guide

Access to data is direct, which means you can access a small subset of data from a large dataset

e�ciently, without �rst accessing all the data that precedes it. Reading and writing data by

specifying a variable, instead of a position in a �le, makes data access independent of how many

other variables are in the �le, making programs immune to data format changes that involve adding

more variables to the data.

In the C and FORTRAN interfaces, �les are not speci�ed by name every time you want to

access data, but instead by a small integer called a �le ID, obtained when the �le is �rst created or

opened. Similarly, a variable is not speci�ed by name for every data access either, but by a variable

ID, a small integer used to identify a variable in a netCDF �le. (In the C++ interface, open netCDF

�les and variables are objects, so no IDs are needed.)

3.2.1 Forms of Data Access

The netCDF interface supports several forms of direct access to data values in an open netCDF

�le. We describe each of these forms of access in order of increasing generality:

� access to individual elements, speci�ed with an index vector;

� access to array sections, speci�ed with an index vector, and count vector;

� access to subsampled array sections, speci�ed with an index vector, count vector, and stride

vector; and

� access to mapped array sections, speci�ed with an index vector, count vector, stride vector,

and an index mapping vector.

These four types of vector (index vector, count vector, stride vector and index mapping vector)

are all vectors with an element for each dimension. For an n-dimensional variable (rank = n), an

n-element vector is needed. If the variable is a scalar (no dimensions), these vectors are ignored.

An array section is a \slab" or contiguous rectangular block that is speci�ed by two vectors.

The index vector gives the indices of the element in the corner closest to the origin. The count

vector gives the lengths of the edges of the slab along each of the variable's dimensions, in order.

The number of values accessed is the product of these edge lengths.

A subsampled array section is similar to an array section, except that an additional stride vector

is used specify sampling. This vector has an element for each dimension giving the length of the

strides to be taken along that dimension. For example, a stride of 4 means every fourth value along

the corresponding dimension. The total number of values accessed is the product of the ceiling

(i.e. rounding up to integer) of each edge length (de�ned by the count vector) divided by the

corresponding stride.

A mapped array section is similar to a subsampled array section except that an additional index

mapping vector allows one to specify how data values associated with the netCDF variable are

arranged in memory. The o�set, in bytes, of each value from the reference location, is given by the

Chapter 3: Data 23

sum of the products of each index by the corresponding element of the index mapping vector. The

number of values accessed is the same as for a subsampled array section.

The use of mapped array sections is discussed more fully below, but �rst we present an example

of the more commonly used array-section access.

3.2.2 An Example of Array-Section Access

Assume that in our earlier example netCDF �le (see Chapter 2 [CDL example], page 13), we

wish to read a cross-section of all the data for the temp variable at one level (say, the second), and

assume that there are currently three records (time values) in the netCDF �le. Recall that the

dimensions are de�ned as

lat = 5, lon = 10, level = 4, time = unlimited;

and the variable temp is declared as

float temp(time, level, lat, lon);

in the CDL notation.

A corresponding C variable that holds data for only one level might be declared as

#define LATS 5

#define LONS 10

#define LEVELS 1

#define TIMES 3 /* currently */

: : :

float temp[TIMES*LEVELS*LATS*LONS];

to keep the data in a one-dimensional array, or

: : :

float temp[TIMES][LEVELS][LATS][LONS];

using a multidimensional array declaration.

In FORTRAN, the dimensions are reversed from the CDL declaration with the �rst dimen-

sion varying fastest and the record dimension as the last dimension of a record variable. Thus a

FORTRAN declaration for the corresponding variable that holds data for only one level is

INTEGER LATS, LONS, LEVELS, TIMES

PARAMETER (LATS=5, LONS=10, LEVELS=1, TIMES=3)

: : :

REAL TEMP(LONS, LATS, LEVELS, TIMES)

To specify the block of data that represents just the second level, all times, all latitudes, and

all longitudes, we need to provide a corner and some edge lengths. The corner should be (0, 1, 0,

0) in C|or (1, 1, 2, 1) in FORTRAN|because we want to start at the beginning of each of the

time, lon, and lat dimensions, but we want to begin at the second value of the level dimension.

The edge lengths should be (3, 1, 5, 10) in C|or (10, 5, 1, 3) in FORTRAN|since we want to

24 NetCDF 2.4 User's Guide

get data for all three time values, only one level value, all �ve lat values, and all 10 lon values.

We should expect to get a total of 150
oat values returned (3 * 1 * 5 * 10), and should provide

enough space in our array for this many. The order in which the data will be returned is with

the last dimension, lon, varying fastest for C, or with the �rst dimension, LON, varying fastest for

FORTRAN:

C FORTRAN

temp[0][1][0][0] TEMP(1, 1, 2, 1)

temp[0][1][0][1] TEMP(2, 1, 2, 1)

temp[0][1][0][2] TEMP(3, 1, 2, 1)

temp[0][1][0][3] TEMP(4, 1, 2, 1)

: : : : : :

temp[2][1][4][7] TEMP(8, 5, 2, 3)

temp[2][1][4][8] TEMP(9, 5, 2, 3)

temp[2][1][4][9] TEMP(10, 5, 2, 3)

Note that the di�erent dimension orders for the C and FORTRAN interfaces do not re
ect a

di�erent order for values stored on the disk, but merely di�erent orders supported by the procedural

interfaces to the two languages. In general, it does not matter whether a netCDF �le is written

using the C or FORTRAN interface; netCDF �les written from either language may be read by

programs written in the other language.

3.2.3 More on General Array Section Access

The use of mapped array sections allows non-trivial relationships between the disk addresses of

variable elements and the addresses where they are stored in memory. For example, a matrix in

memory could be the transpose of that on disk, giving a quite di�erent order of elements. In a

regular array section, the mapping between the disk and memory addresses is trivial: the structure

of the in-memory values (i.e. the dimensional sizes and their order) is identical to that of the array

section. In a mapped array section, however, an index mapping vector is used to de�ne the mapping

between indices of netCDF variable elements and their memory addresses. The o�set, in bytes,

from the origin of a memory-resident array to a particular point is given by the inner product1 of

the index mapping vector with the point's index vector2 . The index mapping vector for a regular

array section would have | in order from most rapidly varying dimension to most slowly | the

byte size of a memory-resident datum (e.g. 4 for a
oating-point value), then the product of that

1 The inner product of two vectors [x0, x1, : : :, xn] and [y0, y1, : : :, yn] is just x0*y0 + x1*y1 +

: : : + xn*yn.
2 A point's coordinate o�set vector gives, for each dimension, the o�set from the origin of

the containing array to the point. In C, a point's coordinate o�set vector is the same as it's

coordinate vector. In FORTRAN, however, the values of a point's coordinate o�set vector are

one less than the corresponding values of the point's coordinate vector.

Chapter 3: Data 25

value with the edge length of the most rapidly varying dimension of the array section, then the

product of that value with the edge length of the next most rapidly varying dimension, and so

on. In a mapped array, however, the correspondence between netCDF variable disk locations and

memory locations can be radically di�erent. For example, the following C de�nitions

struct vel {

int flags;

float u;

float v;

} vel[NX][NY];

long imap[2] = {

sizeof(struct vel),

sizeof(struct vel)*NY};

where imap is the index mapping vector, can be used to access the memory-resident values of

the netCDF variable, vel(NY,NX), even though the dimensions are transposed and the data is

contained in a 2-D array of structures rather than a 2-D array of
oating-point values.

A more detailed example of mapped array access is presented in the description of the C and

FORTRAN interfaces for mapped array access. See Section 7.7 [Write a Subsampled Or Mapped

Array of Values: ncvarputg, NCVPTG, and NCVPGC], page 73.

Note that, although the netCDF abstraction allows the use of subsampled or mapped array-

section access if warranted by the situation, they are not required. If you do not need these more

general forms of access, you may ignore these capabilities and use single value access or regular

array section access instead.

3.2.4 Record-Oriented Access

Record-oriented access provides a more e�cient alternative method in C (not FORTRAN) of

reading or writing a whole record or part of a record. A record contains data for all the record

variables, and any number of these can be read or written in a single record-oriented access call.

You specify a netCDF �le, a record number (index of unlimited dimension) and an array of

pointers to bu�ers (areas of memory) for each of the variables in the record. Those variables

corresponding to NULL values in this array are ignored.

An example where the gain in speed could be considerable would be a �le consisting of �fty

variables, all of which have just one dimension which is the unlimited dimension. Thus each

record contains a single value for each of �fty variables. It would be much faster to use a single

record-oriented call, which reads or writes a whole record of �fty values, than to use �fty separate

conventional calls, which each read or write a single value.

26 NetCDF 2.4 User's Guide

3.3 Data Structures

The only kind of data structure directly supported by the netCDF abstraction is a collection of

named arrays with attached vector attributes. NetCDF is not particularly well-suited for storing

linked lists, trees, sparse matrices, ragged arrays or other kinds of data structures requiring point-

ers. It is possible to build other kinds of data structures from sets of arrays by adopting various

conventions regarding the use of data in one array as pointers into another array. The netCDF

library won't provide much help or hindrance with constructing such data structures, but netCDF

provides the mechanisms with which such conventions can be designed.

The following example stores a ragged array ragged_mat using an attribute row_index to name

an associated index variable giving the index of the start of each row. The �rst row contains 12

(12-0) elements, the second 7 (19-12), etc.

float ragged_mat(max_elements);

ragged_mat:row_index = "row_start";

int row_start(max_rows);

data:

row_start = 0, 12, 19, : : :

As another example, netCDF variables may be grouped within a netCDF �le by de�ning at-

tributes that list the names of the variables in each group, separated by a conventional delimiter

such as a space or comma. A convention can be adopted to use particular sorts of attribute names

for such groupings, so that an arbitrary number of named groups of variables can be supported.

If needed, a particular conventional attribute for each variable might list the names of the groups

of which it is a member. Use of attributes, or variables that refer to other attributes or variables,

provides a
exible mechanism for representing some kinds of complex structures in netCDF �les.

Chapter 4: Use of the NetCDF Library 27

4 Use of theNetCDFLibrary

You can use the netCDF library without knowing about all of the netCDF interface. If you are

creating a netCDF �le, only a handful of routines are required to de�ne the necessary dimensions,

variables, and attributes, and to write the data to the netCDF �le. (Even less are needed if you use

the ncgen utility to create the �le before running a program using netCDF library calls to write

data.) Similarly, if you are writing software to access data stored in a particular netCDF object,

only a small subset of the netCDF library is required to open the netCDF �le and access the data.

Authors of generic applications that access arbitrary netCDF �les need to be familiar with more

of the netCDF library.

In this chapter we provide templates of common sequences of netCDF subroutine calls needed

for common uses. For clarity we present only the names of routines; omit declarations and error

checking; indent statements that are typically invoked multiple times; and use : : : to represent

arbitrary sequences of other statements. Full argument lists for the procedures and subroutines are

described in later chapters.

4.1 Creating a NetCDF File

The typical sequences of netCDF calls used to create a new netCDF �le follows.

nccreate /* create netCDF file: enter define mode */

: : :

ncdimdef /* define dimension: from name and size */

: : :

ncvardef /* define variable: from name, type, dimensions */

: : :

ncattput /* put attribute: assign attribute values */

: : :

ncendef /* end definitions: leave define mode */

: : :

ncvarput /* put variable: provide values for variables */

: : :

ncclose /* close: save new netCDF file */

In FORTRAN, the corresponding sequence looks like this:

NCCRE ! create netCDF file: enter define mode

: : :

NCDDEF ! define dimensions: from name and size

: : :

NCVDEF ! define variables: from name, type, dimensions

: : :

NCAPT or NCAPTC ! put attribute: assign attribute values

: : :

NCENDF ! end definitions: leave define mode

: : :

28 NetCDF 2.4 User's Guide

NCVPT or NCVPTC ! put variable: provide values for variables

: : :

NCCLOS ! close: save new netCDF file

Only one call is needed to create a netCDF �le, at which point you will be in the �rst of two

netCDF modes. When accessing an open netCDF �le, it is either in de�ne mode or data mode.

In de�ne mode, you can create dimensions, variables, and new attributes, but you cannot read or

write variable data. In data mode, you can access data and change existing attributes, but you are

not permitted to create new dimensions, variables, or attributes.

One call to ncdimdef (or NCDDEF) is needed for each dimension created. Similarly, one call to

ncvardef (or NCVDEF) is needed for each variable creation, and one call to ncattput (or NCAPT or

NCAPTC) is needed for each attribute de�ned and assigned a value. To leave de�ne mode and enter

data mode, call ncendef (or NCENDF).

Once in data mode, you can add new data to variables, change old values, and change values

of existing attributes (so long as the attribute changes do not require more storage space). The

FORTRAN interface provides two subroutines for de�ning attributes and providing values for

variables, depending on whether a numeric or character string value is used. Single values are

written to a variable with ncvarput1 (or NCVPT1 or NCVP1C); while arbitrary arrays of data are

written using ncvarput or ncvarputg (or NCVPT, NCVPTC, NCVPTG, or NCVPGC) instead. Multi-

variable records of data may be written using multiple calls to ncvarput (or NCVPT) or with a

single call to ncrecput.

Finally, you should explicitly close all netCDF �les that have been opened for writing by calling

ncclose (or NCCLOS). If a program terminates abnormally with netCDF �les open for writing,

you may lose one or more records of the most recently written record variable data as well as any

attribute changes since the last call to ncsync (or NCSNC). It is possible to reduce the chance of

losing data due to abnormal termination by explicitly calling ncsync (NCSNC) after every write to

netCDF variables or change to attribute values. This can be expensive in computer resources, so

such calls should ordinarily be omitted unless they are really needed.

4.2 Reading a NetCDF File with Known Names

Here we consider the case where you know the names of not only the netCDF �les, but also the

names of their dimensions, variables, and attributes. (Otherwise you would have to do \inquire"

calls.) The order of typical C calls to read data from those variables in a netCDF �le is:

ncopen /* open existing netCDF file */

: : :

ncdimid /* get dimension IDs */

: : :

ncvarid /* get variable IDs */

: : :

ncattget /* get attribute values */

Chapter 4: Use of the NetCDF Library 29

: : :

ncvarget /* get values of variables */

: : :

ncclose /* close netCDF file */

In FORTRAN, the corresponding sequence looks like this:

NCOPN ! open existing netCDF file

: : :

NCDID ! get dimension IDs

: : :

NCVID ! get variable IDs

: : :

NCAGT or NCAGTC ! get attribute values

: : :

NCVGT or NCVGTC ! get values of variables

: : :

NCCLOS ! close netCDF file

First, a single call opens the netCDF �le, given the �le name, and returns a netCDF ID that is

used to refer to the open netCDF �le in all subsequent calls.

Next, a call to ncdimid (or NCDID) for each dimension of interest gets the dimension ID from

the dimension name. Similarly, each required variable ID is determined from its name by a call to

ncvarid (or NCVID). Once variable IDs are known, variable attribute values can be retrieved using

the netCDF ID, the variable ID, and the desired attribute name as input to ncattget (or NCAGT or

NCAGTC) for each desired attribute. Variable data values can be directly accessed from the netCDF

�le with ncvarget1 (or NCVGT1 or NCVG1C) for single values, ncvarget or ncvargetg (or NCVGT,

NCVGTC, NCVGTG, or NCVGGC) for cross-sections of values, or ncrecget for records of values.

Finally, the netCDF �le is closed with ncclose (or NCCLOS). There is no need to close a �le

open only for reading.

4.3 Reading a netCDF File with Unknown Names

Many programs (e.g. generic software) need to get It is possible to write programs (e.g. generic

software) which do such things as processing every variable (except perhaps coordinate variables)

in some way, without needing to know in advance the names of these variables. Even the names of

dimensions and attributes may be unknown.

Names and other information may be obtained from netCDF �les by calling inquire functions.

These return information about a whole netCDF �le, a dimension, a variable, or an attribute. The

following template illustrates how they are used:

30 NetCDF 2.4 User's Guide

ncopen /* open existing netCDF file */

: : :

ncinquire /* find out what is in it */

: : :

ncdiminq /* get dimension names, sizes */

: : :

ncvarinq /* get variable names, types, shapes */

: : :

ncattname /* get attribute names */

: : :

ncattinq /* get attribute types and lengths */

: : :

ncattget /* get attribute values */

: : :

ncvarget /* get values of variables */

: : :

ncclose /* close netCDF file */

In FORTRAN, the corresponding sequence looks like this:

NCOPN ! open existing netCDF file

: : :

NCINQ ! find out what is in it

: : :

NCDINQ ! get dimension names, sizes

: : :

NCVINQ ! get variable names, types, shapes

: : :

NCANAM ! get attribute names

: : :

NCAINQ ! get attribute values

: : :

NCAGT or NCAGTC ! get attribute values

: : :

NCVGT or NCVGTC ! get values of variables

: : :

NCCLOS ! close netCDF file

As in the previous example, a single call opens the existing netCDF �le, returning a netCDF

ID. This netCDF ID is given to the ncinquire (or NCINQ) routine, which returns the number of

dimensions, the number of variables, the number of global attributes, and the ID of the unlimited

dimension, if there is one.

Another inquire function, ncrecinq, provides a convenient way of obtaining information about

record variables, although the information can also be obtained using the other inquire functions.

The ncrecinq function returns the number of record variables, their variable IDs, and how much

memory is needed for a data record.

Chapter 4: Use of the NetCDF Library 31

All the inquire functions are quite inexpensive to use and require no I/O, since the information

they provide is stored in memory. In the C interface, the inquire functions also support getting a

subset of information, by providing null pointers instead of valid addresses, for undesired informa-

tion.

Dimension IDs are assigned by using consecutive integers (beginning at 0 in C, 1 in FORTRAN).

Also dimensions, once created, cannot be deleted. Therefore, knowing the number of dimension IDs

in a netCDF �le means knowing all the dimension IDs: they are the integers 0, 1, 2, : : :, (or 1, 2,

3, : : : in FORTRAN). For each dimension ID, a call to the inquire function ncdiminq (or NCDINQ)

returns the dimension name and size.

Variable IDs are also assigned from consecutive integers 0, 1, 2, : : :, (or 1, 2, 3, : : : in FORTRAN).

These can be used in ncvarinq (or NCVINQ) calls to �nd out the names, types, shapes, and the

number of attributes assigned to each variable.

Once the number of attributes for a variable is known, successive calls to ncattname (or NCANAM)

return the name for each attribute given the netCDF ID, variable ID, and attribute number. Armed

with the attribute name, a call to ncattinq (or NCAINQ) returns its type and length. Given the type

and length, you can allocate enough space to hold the attribute values. Then a call to ncattget

(or NCAGT or NCAGTC) returns the attribute values.

Once the names, IDs, types, shapes, and lengths of all netCDF components are known, data

values can be accessed by calling ncvarget1 (or NCVGT1 or NCVG1C) for single values, ncvarget or

ncvargetg (or NCVGT, NCVGTC, NCVGTG, or NCVGGC) for aggregates of values using array access, or

ncrecget for aggregates of values using record access.

4.4 Adding NewDimensions, Variables, Attributes

An existing netCDF �le can be extensively altered. New dimensions, variables, and attributes

can be added or existing ones renamed, and existing attributes can be deleted. Existing dimensions,

variables, and attributes can be renamed. The following code template lists a typical sequence of

calls to add new netCDF components to an existing �le:

ncopen /* open existing netCDF file */

: : :

ncredef /* put it into define mode */

: : :

ncdimdef /* define additional dimensions (if any) */

: : :

ncvardef /* define additional variables (if any) */

: : :

ncattput /* define additional attributes (if any) */

: : :

ncendef /* check definitions, leave define mode */

: : :

ncvarput /* provide values for new variables */

32 NetCDF 2.4 User's Guide

: : :

ncclose /* close netCDF file */

In FORTRAN, the corresponding sequence looks like this:

NCOPN ! open existing netCDF file

: : :

NCREDF ! put it into define mode

: : :

NCDDEF ! define additional dimensions (if any)

: : :

NCVDEF ! define additional variables (if any)

: : :

NCAPT or NCAPTC ! define additional attributes (if any)

: : :

NCENDF ! check definitions, leave define mode

: : :

NCVPT or NCVPTC ! provide values for new variables

: : :

NCCLOS ! close netCDF file

A netCDF �le is �rst opened by the ncopen (or NCOPN) call. This call puts you in data mode,

which means existing data values can be accessed and changed, existing attributes can be changed

(so long as they do not grow), but nothing can be added. To add new netCDF dimensions, variables,

or attributes you must leave data mode and enter de�ne mode, by calling ncredef (or NCREDF). In

de�ne mode, call ncdimdef (or NCDDEF) to de�ne new dimensions, ncvardef (or NCVDEF) to de�ne

new variables, and ncattput (or NCAPT or NCAPTC) to assign new attributes to variables or enlarge

old attributes.

You can leave de�ne mode and reenter data mode, checking all the new de�nitions for consistency

and committing the changes to disk, by calling ncendef (or NCENDF). If you do not wish to reenter

data mode, just call ncclose (or NCCLOS), which will have the e�ect of �rst calling ncendef (or

NCENDF).

Until the ncendef (or NCENDF) call, you may back out of all the rede�nitions made in de�ne

mode and restore the previous state of the netCDF dataset by calling ncabort (or NCABOR). You

may also use the ncabort call to restore the netCDF dataset to a consistent state if the call to

ncendef (or NCENDF) fails. If you have called ncclose (or NCCLOS) from de�nition mode and the

implied call to ncendef (or NCENDF) fails, ncabort (or NCABOR) will automatically be called to close

the netCDF �le and leave it in its previous consistent state (before you entered de�ne mode).

4.5 Error Handling

The netCDF library provides the facilities needed to handle errors in a
exible way. However it

is often unnecessary to specify anything about error handling, since by default all netCDF library

routines just print an error message and exit when an error occurs. If this (admittedly drastic)

Chapter 4: Use of the NetCDF Library 33

error behavior is acceptable, you never need to check return values, since any condition that would

result in an error will print an explanatory message and exit. For simplicity, the examples in this

guide assume this default error-handling behavior, so there is no checking of return values.

In the C interface, errors may be handled more
exibly by setting the external integer ncopts,

declared in the �le `netcdf.h'. Two aspects of the error-handling behavior can be modi�ed inde-

pendently: the suppression of error messages, and the fatality of errors. The default behavior, that

errors are both verbose and fatal, is speci�ed by the assignment

ncopts = NC_VERBOSE | NC_FATAL;

where NC_VERBOSE and NC_FATAL are prede�ned constants from the include �le `netcdf.h'.

If you want error messages but do not wish errors to be fatal, turn o� the fatal error
ag with:

ncopts = NC_VERBOSE;

If you want neither error messages nor fatal errors, turn o� both
ags with:

ncopts = 0;

In non-fatal mode you should check the return value after each call to a netCDF function. This

value is 0 normally and -1 if an error occurs. Another externally-de�ned integer, ncerr, contains a

netCDF-speci�c error code that is available after an error has occurred to determine the nature of

the error. The names and descriptions of netCDF error codes are included in the �le `netcdf.h'.

In the FORTRAN interface, the error options described above can be accessed by using the rou-

tines NCPOPT and NCGOPT. The default error- handling behavior is equivalent to the statement

CALL NCPOPT(NCVERBOS+NCFATAL)

where the values of NCVERBOS and NCFATAL are prede�ned constants from the FORTRAN

include �le `netcdf.inc'. If you want error messages, but do not wish errors to be fatal, turn o�

the fatal error
ag with:

CALL NCPOPT(NCVERBOS)

If you want neither error messages nor fatal errors, turn o� both
ags with:

CALL NCPOPT(0)

To get the current value of the error options, use:

CALL NCGOPT(NCOPTS)

In either case, the integer return code (the last parameter in all of the FORTRAN subroutines

and functions) contains the non-zero netCDF-speci�c error number that can be used to determine

the nature of the error. Names and descriptions of netCDF error codes are included in the �le

`netcdf.inc'.

Occasionally, low-level write errors may occur in the XDR library layer below the netCDF

library. For example, if a write operation causes you to exceed disk quotas or to attempt to write

34 NetCDF 2.4 User's Guide

to a device that is no longer available, you may get an error message from one of the XDR functions

rather than from the netCDF library.

4.6 Compiling and Linking with the NetCDF Library

Details of how to compile and link a program that uses the netCDF C or FORTRAN interfaces

di�er, depending on the operating system, the available compilers, and where the netCDF library

and include �les are installed. Nevertheless, we provide here examples of how to compile and link a

program that uses the netCDF library on a Unix platform, so that you can adjust these examples

to �t your installation.

C Interface

Every C �le that references netCDF functions or constants must contain an appropriate

#include statement before the �rst such reference:

#include <netcdf.h>

Unless the `netcdf.h' �le is installed in a standard directory where the C compiler always looks,

you must use the -I option when invoking the compiler, to specify a directory where `netcdf.h' is

installed, for example:

cc -c -I/usr/local/netcdf/include myprogram.c

Alternatively, you could specify an absolute pathname in the #include statement, but then your

program would not compile on another platform where netCDF is installed in a di�erent location.

Unless the netCDF library is installed in a standard directory where the linker always looks, you

must use the -L and -l options to link an object �le that uses the netCDF library. For example:

cc -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf

Alternatively, you could specify an absolute pathname for the library:

cc -o myprogram myprogram.o -l/usr/local/netcdf/lib/libnetcdf.a

On some systems, you must specify an additional library after the netCDF library where the

system XDR libraries are found.

FORTRAN Interface

Every FORTRAN �le that references netCDF functions or constants must contain an appropri-

ate INCLUDE statement before the �rst such reference:

INCLUDE 'netcdf.inc'

Unless the `netcdf.inc' �le is installed in a standard directory where the FORTRAN compiler

always looks, you must use the -I option when invoking the compiler, to specify a directory where

`netcdf.inc' is installed, for example:

Chapter 4: Use of the NetCDF Library 35

f77 -c -I/usr/local/netcdf/include myprogram.f

Alternatively, you could specify an absolute pathname in the INCLUDE statement, but then your

program would not compile on another platform where netCDF is installed in a di�erent location.

Unless the netCDF library is installed in a standard directory where the linker always looks, you

must use the -L and -l options to link an object �le that uses the netCDF library. For example:

f77 -o myprogram myprogram.o -L/usr/local/netcdf/lib -lnetcdf

Alternatively, you could specify an absolute pathname for the library:

f77 -o myprogram myprogram.o -l/usr/local/netcdf/lib/libnetcdf.a

On some systems, you must specify an additional library after the netCDF library where the

system XDR libraries are found.

36 NetCDF 2.4 User's Guide

Chapter 5: Files 37

5 Files

This chapter presents the interfaces of the netCDF routines that deal with a netCDF �le as a

whole.

A netCDF �le that has not yet been opened can only be referred to by its �le name. Once

a netCDF �le is opened, it is referred to by a netCDF ID, which is a small nonnegative integer

returned when you create or open the �le. A netCDF ID is much like a �le descriptor in C or a

logical unit number in FORTRAN. In any single program, the netCDF IDs of distinct open netCDF

�les are distinct. A single netCDF �le may be opened multiple times and will then have multiple

distinct netCDF IDs; however at most one of the open instances of a single netCDF �le should

permit writing. When an open netCDF �le is closed, the ID is no longer associated with a netCDF

�le.

The operations supported on a netCDF �le as a single object are:

� Create, given �le name and whether to overwrite or not.

� Open for access, given �le name and read or write intent.

� Put into de�ne mode, to add dimensions, variables, or attributes.

� Take out of de�ne mode, checking consistency of additions.

� Close, writing to disk if required.

� Get number of dimensions, number of variables, number of global attributes, and ID of the

unlimited dimension, if any.

� Synchronize to disk to make sure it is current.

� Set and unset no�ll mode for optimized sequential writes.

After a summary of conventions used in describing the netCDF C and FORTRAN interfaces, the

rest of this chapter presents the interfaces for these operations.

5.1 NetCDF Library Interface Descriptions

Each interface description for a particular netCDF function in this and later chapters contains:

� A description of the purpose of the function;

� A list of possible error conditions;

� A C function prototype that presents the type and order of the formal parameters to the

function;

� A description of each formal parameter in the C interface;

� An example of a C program fragment calling the netCDF function and perhaps other netCDF

functions;

� A FORTRAN function prototype that presents the type and order of the formal parameters

to the FORTRAN function or functions that provide the same functionality as the C function;

38 NetCDF 2.4 User's Guide

� A description of each formal parameter in the FORTRAN interface; and

� An example of a FORTRAN program fragment that duplicates the function of the example C

fragment.

The C function prototypes specify the order and type of each formal parameter and conform to

the ANSI C standard. For FORTRAN a similar syntax is used to concisely present the order and

types of FORTRAN formal parameters. In the few cases in which a single C function corresponds

to two FORTRAN functions, the FORTRAN functions prototypes are presented together.

5.2 Create a NetCDF �le: nccreate and NCCRE

The function nccreate (or NCCRE for FORTRAN) creates a new netCDF �le, returning a

netCDF ID that can subsequently be used to refer to the netCDF �le. The new netCDF �le

is placed in de�ne mode.

In case of an error, nccreate returns -1; NCCRE returns a nonzero value in rcode. Possible

causes of errors include::

� Passing a �le name that includes a directory that does not exist.

� Specifying a �le name of a �le that exists and also specifying NC_NOCLOBBER (or NCNOCLOB).

� Attempting to create a netCDF �le in a directory where you don't have permission to create

�les.

C Interface: nccreate

int nccreate (const char* filename, int cmode);

filename The �le name of the new netCDF �le.

cmode Should be speci�ed as either NC_CLOBBER or NC_NOCLOBBER. These constants are de�ned

in the include �le named `netcdf.h'. NC_CLOBBER means that even if the �le already

exists, you want to create a new �le with the same name, erasing the old �le's contents.

NC_NOCLOBBER means you want to create a new netCDF �le only if the given �le name

does not refer to a �le that already exists.

In this example we create a netCDF �le named `foo.nc'; we want the �le to be created in the

current directory only if a �le with that name does not already exist:

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = nccreate("foo.nc", NC_NOCLOBBER);

Chapter 5: Files 39

FORTRAN Interface: NCCRE

INTEGER FUNCTION NCCRE (CHARACTER*(*) FILENAME, INTEGER CMODE,

INTEGER RCODE)

FILENAME The �le name of the new netCDF �le.

CMODE Should be speci�ed as either NCCLOB or NCNOCLOB. These constants are de�ned in the

include �le `netcdf.inc'. NCCLOBmeans that even if the �le already exists, you want to

create a new �le with the same name, erasing the old �le's contents. NCNOCLOB means

you want to create a new netCDF �le only if the given �le name does not refer to a �le

that already exists.

RCODE Returned error code. If no errors occurred, 0 is returned.

In this example we create a netCDF �le named `foo.nc', assuming we want the �le to be created

in the current directory only if a �le with that name does not already exist:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID

: : :

NCID = NCCRE('foo.nc', NCNOCLOB, RCODE)

5.3 Open a NetCDF File for Access: ncopen and NCOPN

The function ncopen (or NCOPN for FORTRAN) opens an existing netCDF �le for access.

In case of an error, ncopen returns -1; NCOPN returns a nonzero value in rcode. Possible causes

of errors include::

� The speci�ed netCDF �le does not exist.

� The mode speci�ed is something other than NC_WRITE or NC_NOWRITE.

C Interface: ncopen

int ncopen(const char* filename,int mode);

filename File name for netCDF �le to be opened.

mode Either NC_WRITE, to open the �le for writing, or NC_NOWRITE, to open the �le read-only.

\Writing" means any kind of change to the �le, including appending or changing data,

adding or renaming dimensions, variables, and attributes, or deleting attributes.

Here is an example using ncopen to open an existing netCDF �le named `foo.nc' for reading:

40 NetCDF 2.4 User's Guide

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

FORTRAN Interface: NCOPN

INTEGER FUNCTION NCOPN(CHARACTER*(*) FILENAME,

+ INTEGER RWMODE,

+ INTEGER RCODE)

FILENAME File name for netCDF �le to be opened.

RWMODE Either NCWRITE, to open the �le for writing, or NCNOWRIT, to open the �le read-only.

\Writing" means any kind of change to the �le, including appending or changing data,

adding or renaming dimensions, variables, and attributes, or deleting attributes.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example of using NCOPN to open an existing netCDF �le named `foo.nc' for reading:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID

: : :

NCID = NCOPN('foo.nc', NCNOWRIT, RCODE)

5.4 Put Open NetCDF File into De�neMode: ncredef and
NCREDF

The function ncredef (or NCREDF for FORTRAN) puts an open netCDF �le into de�ne mode,

so dimensions, variables, and attributes can be added or renamed and attributes can be deleted.

In case of an error, ncredef returns -1; NCREDF returns a nonzero value in rcode. Possible

causes of errors include::

� The speci�ed netCDF �le is already in de�ne mode.

� The speci�ed netCDF �le was opened for read-only.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncredef

int ncredef(int ncid);

ncid netCDF ID, returned from a previous call to ncopen or nccreate.

Chapter 5: Files 41

Here is an example using ncredef to open an existing NetCDF �le named `foo.nc' and put it

into de�ne mode:

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = ncopen("foo.nc", NC_WRITE); /* open file */

: : :

ncredef(ncid); /* put in define mode */

FORTRAN Interface: NCREDF

SUBROUTINE NCREDF(INTEGER NCID, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example of using NCREDF to open an existing netCDF �le named `foo.nc' and put it

into de�ne mode:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

: : :

CALL NCREDF(NCID, RCODE)

5.5 Leave De�ne Mode: ncendef and NCENDF

The function ncendef (or NCENDF for FORTRAN) takes an open netCDF �le out of de�ne mode.

The changes made to the netCDF �le while it was in de�ne mode are checked and committed to

disk if no problems occurred. The netCDF �le is then placed in data mode, so variable data can

be read or written.

This call can be expensive, since it involves initializing non-record variables and copying data

under some circumstances. See Chapter 9 [NetCDF File Structure and Performance], page 121, for

a more extensive discussion.

In case of an error, ncendef returns -1; NCENDF returns a nonzero value in rcode. Possible

causes of errors include:

� The speci�ed netCDF �le is not in de�ne mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

42 NetCDF 2.4 User's Guide

C Interface: ncendef

int ncendef(int ncid);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

Here is an example using ncendef to �nish the de�nitions of a new netCDF �le named `foo.nc'

and put it into data mode:

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = nccreate("foo.nc", NC_NOCLOBBER);

: : : /* create dimensions, variables, attributes */

ncendef(ncid); /*leave define mode*/

FORTRAN Interface: NCENDF

SUBROUTINE NCENDF(INTEGER NCID, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCENDF to �nish the de�nitions of a new netCDF �le named `foo.nc'

and put it into data mode:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID

: : :

NCID = NCCRE('foo.nc', NCNOCLOB, RCODE)

: : : ! create dimensions, variables, attributes

CALL NCENDF(NCID, RCODE)

5.6 Close an Open NetCDF File: ncclose and NCCLOS

The function ncclose (or NCCLOS for FORTRAN) closes an open netCDF �le. If the �le is

in de�ne mode, ncendef (or NCENDF) will be called before closing. (In this case, if ncendef [or

NCENDF] returns an error, ncabort [or NCABOR] will automatically be called to restore the �le to

Chapter 5: Files 43

the consistent state before de�ne mode was last entered.) After an open netCDF �le is closed, its

netCDF ID will be reassigned to the next netCDF �le that is opened or created.

In case of an error, ncclose returns -1; NCCLOS returns a nonzero value in rcode. Possible

causes of errors include:

� De�ne mode was entered and the automatic call made to ncendef (or NCENDF) failed.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncclose

int ncclose(int ncid);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

Here is an example using ncclose to �nish the de�nitions of a new netCDF �le named `foo.nc'

and release its netCDF ID:

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = nccreate("foo.nc", NC_NOCLOBBER);

: : : /* create dimensions, variables, attributes */

ncclose(ncid); /* close netCDF file */

FORTRAN Interface: NCCLOS

SUBROUTINE NCCLOS(INTEGER NCID, INTEGER RCODE)

NCID netCDF ID, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCCLOS to �nish the de�nitions of a new netCDF �le named `foo.nc'

and release its netCDF ID:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

: : :

NCID = NCCRE('foo.nc', NCNOCLOB, RCODE)

: : : ! create dimensions, variables, attributes

CALL NCCLOS(NCID, RCODE)

44 NetCDF 2.4 User's Guide

5.7 Inquire about an Open NetCDF File: ncinquire and NCINQ

The function ncinquire (NCINQ for FORTRAN) returns information about an open netCDF

�le, given its netCDF ID. It can be called from either de�ne mode or data mode. It returns values

for the number of dimensions, the number of variables, the number of global attributes, and the

dimension ID of the dimension de�ned with unlimited size, if any. No I/O is required when this

or any other `inquire' function in the netCDF interface is called, since the functions merely return

information that is stored in a table for each open netCDF �le.

In case of an error, ncinquire returns -1; NCINQ returns a nonzero value in rcode. Possible

cause of errors includes:

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncinquire

int ncinquire(int ncid, int* ndims, int* nvars, int* ngatts,

int* recdim);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

ndims Returned number of dimensions de�ned for this netCDF �le. If this parameter is given

as `0' (a null pointer), the number of dimensions will not be returned so no variable to

hold this information needs to be declared.

nvars Returned number of variables de�ned for this netCDF �le. If this parameter is given

as `0' (a null pointer), the number of variables will not be returned so no variable to

hold this information needs to be declared.

ngatts Returned number of global attributes de�ned for this netCDF �le. If this parameter is

given as `0' (a null pointer), the number of global attributes will not be returned so no

variable to hold this information needs to be declared.

recdim Returned ID of the unlimited dimension, if there is one for this netCDF �le. If no

unlimited size dimension has been de�ned, -1 is returned for the value of recdim. If

this parameter is given as `0' (a null pointer), the record dimension ID will not be

returned so no variable to hold this information needs to be declared.

Here is an example using ncinquire to �nd out about a netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid, ndims, nvars, ngatts, recdim;

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

ncinquire(ncid, &ndims, &nvars, &ngatts, &recdim);

Chapter 5: Files 45

FORTRAN Interface: NCINQ

SUBROUTINE NCINQ(INTEGER NCID, INTEGER NDIMS, INTEGER NVARS,

* INTEGER NGATTS, INTEGER RECDIM, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

NDIMS Returned number of dimensions de�ned for this netCDF �le.

NVARS Returned number of variables de�ned for this netCDF �le.

NGATTS Returned number of global attributes de�ned for this netCDF �le.

RECDIM Returned ID of the unlimited dimension, if there is one for this netCDF �le. If no

unlimited size dimension has been de�ned, -1 is returned for the value of RECDIM.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCINQ to �nd out about a netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, NDIMS, NVARS, NATTS, RECDIM, RCODE

: : :

NCID = NCOPN('foo.nc', NCNOWRIT, RCODE)

: : :

CALL NCINQ(NCID, NDIMS, NVARS, NATTS, RECDIM, RCODE)

5.8 Synchronize an Open NetCDF File to Disk: ncsync and
NCSNC

The function ncsync (or NCSNC for FORTRAN) makes sure that the disk copy of a netCDF

�le open for writing is current. The netCDF �le must be in data mode. A netCDF �le in de�ne

mode is synchronized to disk only when ncendef (or NCENDF) is called. A process that is reading

a netCDF �le that another process is writing can also call ncsync (or NCSNC for FORTRAN) to

get updated with the changes made by the writing process (e.g. the number of records written),

without having to close and reopen the �le.

It can be expensive in computer resources to always synchronize to disk after every write of

variable data or change of an attribute value. There are two reasons you might want to synchronize

after writes:

� To minimize data loss in case of abnormal termination, or

� To make data available to other processes for reading immediately after it is written. But note

that a process that already had the �le open for reading would not see the number of records

increase when the writing process calls ncsync; to accomplish this, the reading process must

call ncsync.

46 NetCDF 2.4 User's Guide

Data is automatically synchronized to disk when a netCDF �le is closed, or whenever you leave

de�ne mode.

In case of an error, ncsync returns -1; NCSNC returns a nonzero value in rcode. Possible causes

of errors include:

� The netCDF �le is in de�ne mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncsync

int ncsync(int ncid);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

Here is an example using ncsync to synchronize the disk writes of a netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = ncopen("foo.nc", NC_WRITE); /* open for writing */

: : : /* write data or change attributes */

ncsync(ncid); /* synchronize to disk */

FORTRAN Interface: NCSNC

SUBROUTINE NCSNC(INTEGER NCID, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCSNC to synchronize the disk writes of a netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

: : :

* write data or change attributes

: : :

CALL NCSNC(NCID, RCODE)

Chapter 5: Files 47

5.9 Back Out of Recent De�nitions: ncabort and NCABOR

The function ncabort (or NCABOR for FORTRAN), if not in de�ne mode, closes the netCDF �le.

If the �le is being created and is still in de�ne mode, the �le is deleted. If de�ne mode was entered

by a call to ncredef (or NCREDF), the netCDF �le is restored to its state before de�nition mode

was entered and the �le is closed. The main reason for calling ncabort (or NCABOR) is to restore

the netCDF �le to a known consistent state in case anything goes wrong during the de�nition of

new dimensions, variables, or attributes.

This function is called automatically if ncclose (or NCCLOS) is called from de�ne mode and the

call to leave de�ne mode before closing fails.

In case of an error, ncabort returns -1; NCABOR returns a nonzero value in rcode. Possible

causes of errors include:

� When called from de�ne mode while creating a netCDF �le, deletion of the �le failed.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncabort

int ncabort(int ncid);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

Here is an example using ncabort to back out of rede�nitions of a �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = ncopen("foo.nc", NC_WRITE); /* open for writing */

: : :

ncredef(ncid); /* enter define mode */

: : :

if (ncdimdef(ncid, "lat", 18L) == -1)

ncabort(ncid); /* define failed, abort */

FORTRAN Interface: NCABOR

SUBROUTINE NCABOR(INTEGER NCID, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCABOR to back out of rede�nitions of a �le named `foo.nc':

48 NetCDF 2.4 User's Guide

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, LATID

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

: : :

CALL NCREDF(NCID, RCODE)

: : :

LATID = NCDDEF(NCID, 'LAT', 18, RCODE)

IF (RCODE .EQ. -1) THEN ! dimension definition failed

CALL NCABOR(NCID, RCODE) ! abort redefinitions

ENDIF

: : :

5.10 Set Fill Mode for Writes: ncset�ll and NCSFIL

These calls are intended for advanced usage, to optimize writes under some circumstances de-

scribed below. The function ncsetfill (or NCSFIL for FORTRAN) sets the �ll mode for an

netCDF �le open for writing and returns the current �ll mode. The �ll mode can be speci�ed as

either NC_FILL or NC_NOFILL (NCFILL or NCNOFILL for FORTRAN). The default behavior corre-

sponding to NC_FILL is that data is pre-�lled with �ll values, that is �ll values are written when

you create non-record variables or when you write a value beyond data that hasn't been written

yet. This makes it possible to detect attempts to read data before it was written. See Section 7.14

[Fill Values], page 94, for more information on the use of �ll values. See Section 8.1 [Attribute

Conventions], page 101, for information about how to de�ne your own �ll values.

The behavior corresponding to NC_NOFILL overrides the default behavior of pre�lling data with

�ll values. This can be used to enhance performance, because it avoids the duplicate writes that

occur when the netCDF library writes �ll values that are immediately overwritten with data.

A value indicating which mode the netCDF �le was already in is returned. You can use this

value to temporarily change the �ll mode of an open netCDF �le and then restore it to the previous

mode.

After you turn on NC_NOFILL mode for an open netCDF �le, you must be certain to write valid

data in all the positions that will later be read. Note that NC_NOFILL mode is only a transient

property of a netCDF �le open for writing: if you close and reopen the �le, it will revert to the

default behavior. You can also revert to the default behavior by calling ncsetfill (or NCSFIL for

FORTRAN) again to explicitly set the �ll mode to NC_FILL.

There are three situations where it is advantageous to set no�ll mode:

1. Creating and initializing a netCDF �le. In this case, you should set no�ll mode before calling

ncendef (NCENDF for FORTRAN), and then write completely all non-record variables and the

initial records of all the record variables you want to initialize.

Chapter 5: Files 49

2. Extending an existing record-oriented netCDF �le. Set no�ll mode after opening the �le

for writing, then append the additional records to the �le completely, leaving no intervening

unwritten records.

3. Adding new variables that you are going to initialize to an existing netCDF �le. Set no�ll mode

before calling ncendef (NCENDF for FORTRAN), then write all the new variables completely.

If the netCDF �le has an unlimited dimension and the last record was written while in NC_

NOFILL mode, then the �le will be 4 bytes longer than if NC_NOFILL mode wasn't set, but this will

be completely transparent if you access the data only through the netCDF interfaces.

In case of an error, ncsetfill returns -1; NCSFIL returns a nonzero value in rcode. Possible

causes of errors include:

� The speci�ed netCDF ID does not refer to an open netCDF �le.

� The speci�ed netCDF ID refers to a �le open for read-only access.

� The �llmode argument is neither NC_NOFILL nor NC_FILL (neither NCNOFILL nor NCFILL for

FORTRAN).

C Interface: ncset�ll

int ncsetfill(int ncid, int fillmode);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

fillmode Desired �ll mode for the �le, either NC_NOFILL or NC_FILL.

ncsetfill

Returns the current �ll mode of the �le before this call, either NC_NOFILL or NC_FILL.

Here is an example using ncsetfill to set no�ll mode for subsequent writes of a netCDF �le

named `foo.nc':

#include <netcdf.h>

: : :

int ncid;

: : :

ncid = ncopen("foo.nc", NC_WRITE); /* open for writing */

: : : /* write data with default prefilling behavior */

ncsetfill(ncid, NC_NOFILL); /* set nofill mode */

: : : /* write data with no prefilling */

50 NetCDF 2.4 User's Guide

FORTRAN Interface: NCSFIL

INTEGER FUNCTION NCSFIL(INTEGER NCID, INTEGER FILLMODE,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

FILLMODE Desired �ll mode for the �le, either NCNOFILL or NCFILL.

RCODE Returned error code. If no errors occurred, 0 is returned.

NCSFIL Returns the current �ll mode of the �le before this call, either NCNOFILL or NCFILL.

Here is an example using NCSFIL to set no�ll mode for a netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, OMODE

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

: : :

* write data with default prefilling behavior

: : :

OMODE = NCSFIL(NCID, NCNOFILL, RCODE)

: : :

* write data with no prefilling

: : :

Chapter 6: Dimensions 51

6 Dimensions

Dimensions for a netCDF �le are de�ned when it is created, while the netCDF �le is in de�ne

mode. Additional dimensions may be added later by reentering de�ne mode. A netCDF dimension

has a name and a size. At most one dimension in a netCDF �le can have the NC_UNLIMITED size,

which means variables using this dimension can grow along this dimension.

There is a suggested limit (100) to the number of dimensions that can be de�ned in a single

netCDF �le. The limit is the value of the prede�ned macro MAX_NC_DIMS (MAXNCDIM for FOR-

TRAN). The purpose of the limit is to make writing generic applications simpler. They need only

provide an array of MAX_NC_DIMS dimensions to handle any netCDF �le. The implementation of the

netCDF library does not enforce this advisory maximum, so it is possible to use more dimensions,

if necessary; just don't expect generic applications or netCDF utilities to be able to handle the

resulting netCDF �les.

Ordinarily, the name and size of a dimension are �xed when the dimension is �rst de�ned. The

name may be changed later, but the size of a dimension cannot be changed without copying all the

data to a new netCDF �le with a rede�ned dimension size.

Dimension sizes in the C interface are type long rather than type int to make it possible to

access all the data in a netCDF �le on a platform that only supports a 16-bit int data type, for

example MSDOS. If dimension sizes were type int instead, it would not be possible to access data

from variables with a dimension size greater than a 16-bit int can accommodate.

A netCDF dimension in an open netCDF �le is referred to in the C and FORTRAN interfaces

by a small integer called a dimension ID. In the C interface, dimension IDs are 0, 1, 2, : : :, whereas

in the FORTRAN interface, the associated IDs are instead 1, 2, 3, : : :, in the order in which the

dimensions were de�ned.

Operations supported on dimensions are:

� Create a dimension, given its name and size.

� Get a dimension ID from its name.

� Get a dimension's name and size from its ID.

� Rename a dimension.

6.1 Create a Dimension: ncdimdef and NCDDEF

The function ncdimdef (or NCDDEF for FORTRAN) adds a new dimension to an open netCDF

�le in de�ne mode. It returns a dimension ID, given the netCDF ID, the dimension name, and the

dimension size. At most one unlimited size dimension, called the record dimension, may be de�ned

for each netCDF �le.

In case of an error, ncdimdef returns -1; NCDDEF returns a nonzero value in rcode. Possible

causes of errors include:

52 NetCDF 2.4 User's Guide

� The netCDF �le is not in de�nition mode.

� The speci�ed dimension name is the name of another existing dimension.

� The speci�ed size is not greater than zero.

� The speci�ed size is unlimited, but there is already an unlimited size dimension de�ned for

this netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncdimdef

int ncdimdef(int ncid, const char* name, long size);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

name Dimension name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (`_'). Case is signi�cant.

size Size of dimension; that is, number of values for this dimension as an index to variables

that use it. This should be either a positive integer (of type long) or the prede�ned

constant NC_UNLIMITED.

Here is an example using ncdimdef to create a dimension named lat of size 18 and a record

dimension named rec in a new netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid, latid, recid;

: : :

ncid = nccreate("foo.nc", NC_NOCLOBBER);

: : :

latid = ncdimdef(ncid, "lat", 18L);

recid = ncdimdef(ncid, "rec", NC_UNLIMITED);

FORTRAN Interface: NCDDEF

INTEGER FUNCTION NCDDEF (INTEGER NCID,

+ CHARACTER*(*) DIMNAM,

+ INTEGER DIMSIZ,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

DIMNAM Dimension name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (`_'). Case is signi�cant.

DIMSIZ Size of dimension; that is, number of values for this dimension as an index to variables

that use it. This should be either a positive integer or the prede�ned constant NCUNLIM.

RCODE Returned error code. If no errors occurred, 0 is returned.

Chapter 6: Dimensions 53

Here is an example using NCDDEF to create a dimension named lat of size 18 and a record

dimension named rec in a new netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, LATID, RECID

: : :

NCID = NCCRE('foo.nc', NCNOCLOB, RCODE)

: : :

LATID = NCDDEF(NCID, 'lat', 18, RCODE)

RECID = NCDDEF(NCID, 'rec', NCUNLIM, RCODE)

6.2 Get a Dimension ID from Its Name: ncdimid and NCDID

The function ncdimid (or NCDID for FORTRAN) returns the ID of a netCDF dimension, given

the name of the dimension. If ndims is the number of dimensions de�ned for a netCDF �le, each

dimension has an ID between 0 and ndims-1 (or 1 and ndims for FORTRAN).

In case of an error, ncdimid returns -1; NCDID returns a nonzero value in rcode. Possible causes

of errors include:

� The name that was speci�ed is not the name of any currently de�ned dimension in the netCDF

�le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncdimid

int ncdimid(int ncid, const char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

name Dimension name, a character string beginning with a letter and followed by any se-

quence of letters, digits, or underscore (`_') characters. Case is signi�cant in dimension

names.

Here is an example using ncdimid to determine the dimension ID of a dimension named lat,

assumed to have been de�ned previously in an existing netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid, latid;

: : :

ncid = ncopen("foo.nc", NC_NOWRITE); /* open for reading */

: : :

latid = ncdimid(ncid, "lat");

54 NetCDF 2.4 User's Guide

FORTRAN Interface: NCDID

INTEGER FUNCTION NCDID (INTEGER NCID,

+ CHARACTER*(*) DIMNAME,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

DIMNAME Dimension name, a character string beginning with a letter and followed by any se-

quence of letters, digits, or underscore (`_') characters. Case is signi�cant in dimension

names.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDID to determine the dimension ID of a dimension named lat,

assumed to have been de�ned previously in an existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, LATID

: : :

NCID = NCOPN('foo.nc', NCNOWRIT, RCODE)

: : :

LATID = NCDID(NCID, 'lat', RCODE)

6.3 Inquire about a Dimension: ncdiminq and NCDINQ

The function ncdiminq (or NCDINQ for FORTRAN) returns the name and size of a dimension,

given its ID. The size for the unlimited dimension, if any, is the number of records written so far.

In case of an error, ncdiminq returns -1; NCDINQ returns a nonzero value in rcode. Possible

causes of errors include:

� The dimension ID is invalid for the speci�ed netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncdiminq

int ncdiminq(int ncid, int dimid, char* name, long* size);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

dimid Dimension ID, as returned from a previous call to ncdimid or ncdimdef.

name Returned dimension name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a dimension name is given by the prede�ned

constant MAX_NC_NAME. If the name parameter is given as `0' (a null pointer), no name

will be returned so no space needs to be allocated.

Chapter 6: Dimensions 55

size Returned size of dimension. For the unlimited dimension, this is the number of records

written so far. If this parameter is `0' (a null pointer), the size will not be returned, so

no space for this information need be declared or allocated.

Here is an example using ncdiminq to determine the size of a dimension named lat, and the

name and current maximum size of the unlimited (or record) dimension for an existing netCDF �le

named `foo.nc':

#include <netcdf.h>

: : :

int ncid, latid, ndims, nvars, ngatts, recid;

long latsize, recs;

char recname[MAX_NC_NAME];

: : :

ncid = ncopen("foo.nc", NC_NOWRITE); /* open for reading */

: : :

latid = ncdimid(ncid, "lat");

/* get lat size, but don't get name, since we already know it */

ncdiminq(ncid, latid, 0, &latsize);

/* get ID of record dimension (among other things) */

ncinquire(ncid, &ndims, &nvars, &ngatts, &recid);

/* get record dimension name and current size */

ncdiminq(ncid, recid, recname, &recs);

FORTRAN Interface: NCDINQ

SUBROUTINE NCDINQ (INTEGER NCID, INTEGER DIMID,

+ CHARACTER*(*) DIMNAM, INTEGER DIMSIZ,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

DIMID Dimension ID, as returned from a previous call to NCDID or NCDDEF.

DIMNAM Returned dimension name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a dimension name is given by the prede�ned

constant MAXNCNAM.

DIMSIZ Returned size of dimension. For the unlimited dimension, this is the current maximum

value used for writing any variables with this dimension, that is the maximum record

number.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDINQ to determine the size of a dimension named lat, and the

name and current maximum size of the unlimited (or record) dimension for an existing netCDF �le

named `foo.nc':

56 NetCDF 2.4 User's Guide

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, LATID, LATSIZ

INTEGER NDIMS, NVARS, NGATTS, RECID, NRECS

* 31 in following statement is parameter MAXNCNAM

CHARACTER*31 LATNAM, RECNAM

: : :

NCID = NCOPN('foo.nc', NCNOWRIT, RCODE)

: : :

LATID = NCDID(NCID, 'lat', RCODE)

* get lat name and size, (even though we already know name)

CALL NCDINQ(NCID, LATID, LATNAM, LATSIZ, RCODE)

* get ID of record dimension (among other things)

CALL NCINQ(NCID, NDIMS, NVARS, NGATTS, RECID, RCODE)

* get record dimension name and current size

CALL NCDINQ(NCID, RECID, RECNAME, NRECS, RCODE)

6.4 Rename a Dimension: ncdimrename and NCDREN

The function ncdimrename (or NCDREN for FORTRAN) renames an existing dimension in a

netCDF �le open for writing. If the new name is longer than the old name, the netCDF dataset

must be in de�ne mode. You cannot rename a dimension to have the same name as another

dimension.

In case of an error, ncdimrename returns -1; NCDREN returns a nonzero value in rcode. Possible

causes of errors include:

� The new name is the name of another dimension.

� The dimension ID is invalid for the speci�ed netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

� The new name is longer than the old name and the netCDF �le is not in de�ne mode.

C Interface: ncdimrename

int ncdimrename(int ncid, int dimid, const char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

dimid Dimension ID, as returned from a previous call to ncdimid or ncdimdef.

name New dimension name.

Here is an example using ncdimrename to rename the dimension lat to latitude in an existing

netCDF �le named `foo.nc':

Chapter 6: Dimensions 57

#include <netcdf.h>

: : :

int ncid, latid;

: : :

ncid = ncopen("foo.nc", NC_WRITE); /* open for writing */

: : :

ncredef(ncid); /* put in define mode to rename dimension */

latid = ncdimid(ncid, "lat");

ncdimrename(ncid, latid, "latitude");

ncendef(ncid); /* leave define mode */

FORTRAN Interface: NCDREN

SUBROUTINE NCDREN (INTEGER NCID, INTEGER DIMID,

+ CHARACTER*(*) DIMNAME, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

DIMID Dimension ID, as returned from a previous call to NCDID or NCDDEF.

DIMNAM New name for the dimension.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCDREN to rename the dimension "lat" to "latitude" in an existing

netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE, LATID

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

: : :

* put in define mode to rename dimension

CALL NCREDF(NCID, RCODE)

LATID = NCDID(NCID, 'lat', RCODE)

CALL NCDREN(NCID, LATID, 'latitude', RCODE)

* leave define mode

CALL NCENDF(NCID, RCODE)

58 NetCDF 2.4 User's Guide

Chapter 7: Variables 59

7 Variables

Variables for a netCDF �le are de�ned when the �le is created, while the netCDF �le is in de�ne

mode. Other variables may be added later by reentering de�ne mode. A netCDF variable has a

name, a type, and a shape, which are speci�ed when it is de�ned. A variable may also have values,

which are established later in data mode.

Ordinarily, the name, type, and shape are �xed when the variable is �rst de�ned. The name

may be changed, but the type and shape of a variable cannot be changed. However, a variable

de�ned in terms of the unlimited dimension can grow without bound in that dimension.

A netCDF variable in an open netCDF �le is referred to in the C and FORTRAN interfaces by

a small integer called a variable ID. Variable IDs re
ect the order in which variables were de�ned

within an netCDF �le. In the C interface, variable IDs are 0, 1, 2, : : :, whereas in the FORTRAN

interface, they are instead 1, 2, 3, : : :, in the order in which the variables were de�ned. A function

is available in each interface for getting the variable ID from the variable name and vice-versa.

Attributes (see Chapter 8 [Attributes], page 101) may be associated with a variable to specify

such properties as units.

Operations supported on variables are:

� Create a variable, given its name, data type, and shape.

� Get a variable ID from its name.

� Get a variable's name, data type, shape, and number of attributes from its ID.

� Put a data value into a variable, given variable ID, indices, and value.

� Put an array of values into a variable, given variable ID, corner indices, edge lengths, and a

block of values.

� Put a subsampled or mapped array-section of values into a variable, given variable ID, corner

indices, edge lengths, stride vector, index mapping vector, and a block of values.

� Put values into record variables, given record number and pointers to blocks of values.

� Get a data value from a variable, given variable ID and indices.

� Get an array of values from a variable, given variable ID, corner indices, and edge lengths.

� Get a subsampled or mapped array-section of values from a variable, given variable ID, corner

indices, edge lengths, stride vector, and index mapping vector.

� Get values from record variables, given record number and pointers to where the data should

be stored for each record variable.

� Rename a variable.

� Get number of bytes for a given data type.

� Get the number of record variables, their IDs, and their record sizes.

60 NetCDF 2.4 User's Guide

7.1 Language Types Corresponding to NetCDFData Types

The following table gives the correspondence between netCDF data types and C and FORTRAN

data types:

netCDF/ | C | FORTRAN |

CDL Data | Data API | Data API |

Type | Type Mnemonic | Type Mnemonic |Bits

---------|--------------------|--------------------------------------|----

byte | char NC_BYTE | BYTE, LOGICAL*1 (INTEGER) NCBYTE | 8

char | char NC_CHAR | CHARACTER NCCHAR | 8

short | short NC_SHORT | INTEGER*2 (INTEGER) NCSHORT | 16

long | nclong NC_LONG | INTEGER*4 (INTEGER) NCLONG | 32

float | float NC_FLOAT | REAL*4 (REAL) NCFLOAT | 32

double | double NC_DOUBLE | REAL*8 (DOUBLEPRECISION) NCDOUBLE | 64

The �rst column gives the netCDF data type, which is the same as the CDL data type. The

next pair of columns give, respectively, the C data type corresponding to the �rst column and

the corresponding C preprocessor macro for use in netCDF functions (the preprocessor macros

are de�ned in the netCDF C header-�le netcdf.h). The next pair of columns give, respectively,

the FORTRAN data type corresponding to the �rst column and the corresponding FORTRAN

parameter for use when calling netCDF routines (the parameters are de�ned in the netCDF FOR-

TRAN include-�le netcdf.inc). You should use the un-parenthesized FORTRAN types if possible.

For any type that your FORTRAN compiler doesn't support, use the corresponding parenthesized

type. The last column gives the number of bits used in the external representation of values of the

corresponding type.

Note that the C data type corresponding to a netCDF long is nclong. This type should be

used rather than int or long. It is de�ned in the netCDF header-�le netcdf.h, where it is set to

the appropriate type.

Note that there are no netCDF types corresponding to 64-bit integers or to wide characters in

the current version of the netCDF library.

7.2 Create a Variable: ncvardef and NCVDEF

The function ncvardef (or NCVDEF for FORTRAN) adds a new variable to an open netCDF

�le in de�ne mode. It returns a variable ID, given the netCDF ID, the variable name, the variable

type, the number of dimensions, and a list of the dimension IDs.

In case of an error, ncvardef returns -1; NCVDEF returns a nonzero value in rcode. Possible

causes of errors include:

� The netCDF �le is not in de�ne mode.

� The speci�ed variable name is the name of another existing variable.

� The speci�ed type is not a valid netCDF type.

Chapter 7: Variables 61

� The speci�ed number of dimensions is negative or more than the constant MAX_VAR_DIMS, the

maximum number of dimensions permitted for a netCDF variable.

� One or more of the dimension IDs in the list of dimensions is not a valid dimension ID for the

netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvardef

int ncvardef(int ncid, const char* name, nc_type datatype,

int ndims, const int dimids[]);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

name Variable name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (`_'). Case is signi�cant.

datatype One of the set of prede�ned netCDF data types. The type of this parameter, nc_

type, is de�ned in the netCDF header �le. The valid netCDF data types are NC_BYTE,

NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

ndims Number of dimensions for the variable. For example, 2 speci�es a matrix, 1 speci�es a

vector, and 0 means the variable is a scalar with no dimensions. Must not be negative

or greater than the prede�ned constant MAX_VAR_DIMS.

dimids Vector of ndims dimension IDs corresponding to the variable dimensions. If the ID of

the unlimited dimension is included, it must be �rst. This argument is ignored if ndims

is 0.

Here is an example using ncvardef to create a variable named rh of type long with three

dimensions, time, lat, and lon in a new netCDF �le named `foo.nc':

62 NetCDF 2.4 User's Guide

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int lat_dim, lon_dim, time_dim; /* dimension IDs */

int rh_id; /* variable ID */

int rh_dimids[3]; /* variable shape */

: : :

ncid = nccreate("foo.nc", NC_CLOBBER);

: : :

/* define dimensions */

lat_dim = ncdimdef(ncid, "lat", 5L);

lon_dim = ncdimdef(ncid, "lon", 10L);

time_dim = ncdimdef(ncid, "time", NC_UNLIMITED);

: : :

/* define variable */

rh_dimids[0] = time_dim;

rh_dimids[1] = lat_dim;

rh_dimids[2] = lon_dim;

rh_id = ncvardef (ncid, "rh", NC_DOUBLE, 3, rh_dimids);

FORTRAN Interface: NCVDEF

INTEGER FUNCTION NCVDEF(INTEGER NCID, CHARACTER*(*) VARNAM,

+ INTEGER VARTYP, INTEGER NVDIMS,

+ INTEGER VDIMS(*), INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARNAM Variable name. Must begin with an alphabetic character, which is followed by zero or

more alphanumeric characters including the underscore (`_'). Case is signi�cant.

VARTYP One of the set of prede�ned netCDF data types. The valid netCDF data types are

NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

NVDIMS Number of dimensions for the variable. For example, 2 speci�es a matrix, 1 speci�es a

vector, and 0 means the variable is a scalar with no dimensions. Must not be negative

or greater than the prede�ned constant MAXVDIMS.

VDIMS Vector of NVDIMS dimension IDs corresponding to the variable dimensions. If the ID

of the unlimited dimension is included, it must be last. This argument is ignored if

NVDIMS is 0.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVDEF to create a variable named rh of type long with three dimen-

sions, time, lat, and lon in a new netCDF �le named `foo.nc':

Chapter 7: Variables 63

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER LATDIM, LONDIM, TIMDIM ! dimension IDs

INTEGER RHID ! variable ID

INTEGER RHDIMS(3) ! variable shape

: : :

NCID = NCCRE ('foo.nc', NC_CLOBBER, RCODE)

: : :

! define dimensions

LATDIM = NCDDEF(NCID, 'lat', 5, RCODE)

LONDIM = NCDDEF(NCID, 'lon', 10, RCODE)

TIMDIM = NCDDEF(NCID, 'time', NCUNLIM, RCODE)

: : :

! define variable

RHDIMS(1) = LONDIM

RHDIMS(2) = LATDIM

RHDIMS(3) = TIMDIM

RHID = NCVDEF (NCID, 'rh', NCDOUBLE, 3, RHDIMS, RCODE)

7.3 Get a Variable ID from Its Name: ncvarid and NCVID

The function ncvarid (or NCVID for FORTRAN) returns the ID of a netCDF variable, given its

name.

In case of an error, ncvarid returns -1; NCVID returns a nonzero value in rcode. Possible causes

of errors include:

� The speci�ed variable name is not a valid name for a variable in the speci�ed netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarid

int ncvarid(int ncid, const char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

name Variable name for which ID is desired.

Here is an example using ncvarid to �nd out the ID of a variable named rh in an existing

netCDF �le named `foo.nc':

64 NetCDF 2.4 User's Guide

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

FORTRAN Interface: NCVID

INTEGER FUNCTION NCVID(INTEGER NCID,

+ CHARACTER*(*) VARNAM,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARNAM Variable name for which ID is desired.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVID to �nd out the ID of a variable named rh in an existing netCDF

�le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)

7.4 Get Information about a Variable from Its ID: ncvarinq and
NCVINQ

The function ncvarinq (or NCVINQ for FORTRAN) returns information about a netCDF vari-

able, given its ID. The information returned is the name, type, number of dimensions, a list of

dimension IDs describing the shape of the variable, and the number of variable attributes that have

been assigned to the variable.

In case of an error, ncvarinq returns -1; NCVINQ returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

Chapter 7: Variables 65

C Interface: ncvarinq

int ncvarinq(int ncid, int varid, char* name, nc_type* datatype,

int* ndims, int dimids[], int* natts);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

name Returned variable name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a variable name is given by the prede�ned

constant MAX_NC_NAME. If the name parameter is given as `0' (a null pointer), no name

will be returned so no space needs to be allocated.

datatype Returned variable type, one of the set of prede�ned netCDF data types. The type of

this parameter, nc_type, is de�ned in the netCDF header �le. The valid netCDF data

types are NC_BYTE, NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE. If this

parameter is given as `0' (a null pointer), no type will be returned so no variable to

hold the type needs to be declared.

ndims Returned number of dimensions the variable was de�ned as using. For example, 2

speci�es a matrix, 1 speci�es a vector, and 0 means the variable is a scalar with no

dimensions. If this parameter is given as `0' (a null pointer), no number of dimensions

will be returned so no variable to hold this information needs to be declared.

dimids Returned vector of ndims dimension IDs corresponding to the variable dimensions. The

caller must allocate enough space for a vector of at least ndims integers to be returned.

The maximum possible number of dimensions for a variable is given by the prede�ned

constant MAX_VAR_DIMS. If this parameter is given as `0' (a null pointer), no vector will

be returned so no space to hold the dimension IDs needs to be declared or allocated.

natts Returned number of variable attributes assigned to this variable. If this parameter is

given as `0' (a null pointer), the number of attributes will not be returned so no space

to hold this information needs to be declared or allocated.

Here is an example using ncvarinq to �nd out about a variable named rh in an existing netCDF

�le named `foo.nc':

66 NetCDF 2.4 User's Guide

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[MAX_VAR_DIMS]; /* variable shape */

int rh_natts /* number of attributes */

: : :

ncid = ncopen ("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

/* we don't need name, since we already know it */

ncvarinq (ncid, rh_id, 0, &rh_type, &rh_ndims, rh_dims, &rh_natts);

FORTRAN Interface: NCVINQ

SUBROUTINE NCVINQ (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) VARNAM, INTEGER VARTYP,

+ INTEGER NVDIMS, INTEGER VDIMS(*),

+ INTEGER NVATTS, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

VARNAM Returned variable name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of a variable name is given by the prede�ned

constant MAXNCNAM.

VARTYP Returned variable type, one of the set of prede�ned netCDF data types. The valid

netCDF data types are NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

NVDIMS Returned number of dimensions for the variable. For example, 2 speci�es a matrix, 1

speci�es a vector, and 0 means the variable is a scalar with no dimensions.

VDIMS Returned vector of NVDIMS dimension IDs corresponding to the variable dimensions.

The caller must allocate enough space for a vector of at least NVDIMS integers to be

returned. The maximum possible number of dimensions for a variable is given by the

prede�ned constant MAXVDIMS.

NVATTS Returned number of variable attributes assigned to this variable.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVINQ to �nd out about a variable named rh in an existing netCDF

�le named `foo.nc':

Chapter 7: Variables 67

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

CHARACTER*31 RHNAME ! variable name

INTEGER RHTYPE ! variable type

INTEGER RHN ! number of dimensions

INTEGER RHDIMS(MAXVDIMS) ! variable shape

INTEGER RHNATT ! number of attributes

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

CALL NCVINQ (NCID, RHID, RHNAME, RHTYPE, RHN, RHDIMS, RHNATT,

+ RCODE)

7.5 Write a Single Data Value: ncvarput1, NCVPT1, and NCVP1C

The function ncvarput1 (or NCVPT1 or NCVP1C for FORTRAN) puts a single data value into a

variable of an open netCDF �le that is in data mode. Inputs are the netCDF ID, the variable ID,

a multidimensional index that speci�es which value to add or alter, and the data value.

In case of an error, ncvarput1 returns -1; NCVPT1 returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed indices were out of range for the rank of the speci�ed variable. For example, a

negative index or an index that is larger than the corresponding dimension size will cause an

error.

� The speci�ed netCDF is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarput1

int ncvarput1(int ncid, int varid, const long mindex[], const void *value);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

mindex The multidimensional index of the the data value to be written. The indices are relative

to 0, so for example, the �rst data value of a two-dimensional variable would have index

(0,0). The elements of mindexmust correspond to the variable's dimensions. Hence, if

the variable is a record variable, the �rst index would correspond to the record number.

value Pointer to the data value to be written. The pointer is declared to be of type void *

because it can point to data of any of the basic netCDF types. The data should be of

68 NetCDF 2.4 User's Guide

the appropriate type for the netCDF variable. Warning: neither the compiler nor the

netCDF software can detect whether the wrong type of data is used.

Here is an example using ncvarput1 to set the (1,2,3) element of the variable named rh to

0.5 in an existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that

we know that rh is dimensioned with time, lat, and lon, so we want to set the value of rh that

corresponds to the second time value, the third lat value, and the fourth lon value:

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long rh_index[] = {1, 2, 3}; /* where to put value */

static double rh_val = 0.5; /* value to put */

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

ncvarput1(ncid, rh_id, rh_index, &rh_val);

FORTRAN Interface: NCVPT1

SUBROUTINE NCVPT1 (INTEGER NCID, INTEGER VARID,

+ INTEGER MINDEX(*), type VALUE,

+ INTEGER RCODE)

SUBROUTINE NCVP1C (INTEGER NCID, INTEGER VARID,

+ INTEGER MINDEX(*), CHARACTER CHVAL,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVPT1 and NCVP1C, for putting a single value in a

variable. The �rst puts a numeric value in a variable of numeric type, and the second puts a

character value in a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

MINDEX The multidimensional index of the the data value to be written. The indices are relative

to 1, so for example, the �rst data value of a two-dimensional variable would have index

(1,1). The elements of mindexmust correspond to the variable's dimensions. Hence, if

the variable is a record variable, the last index would correspond to the record number.

VALUE For NCVPT1, the data value to be written. The data may be of a type corresponding

to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be

appropriate for the type of the netCDF variable. Warning: neither the compiler nor

the netCDF software can detect whether the wrong type of data is used.

Chapter 7: Variables 69

CHVAL For NCVP1C, the data value to be written. The data should be of a type character,

corresponding to the netCDF types NCCHAR or NCBYTE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVPT1 to set the (4,3,2) element of the variable named rh to 0.5 in

an existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we know

that rh is dimensioned with lon, lat, and time, so we want to set the value of rh that corresponds

to the fourth lon value, the third lat value, and the second time value:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER RHINDX(3) ! where to put value

DATA RHINDX /4, 3, 2/

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

CALL NCVPT1 (NCID, RHID, RHINDX, 0.5, RCODE)

7.6 Write an Array of Values: ncvarput and NCVPT(C)

The function ncvarput (or NCVPT or NCVPTC for FORTRAN) writes values into a netCDF

variable of an open netCDF �le. The part of the netCDF variable to write is speci�ed by giving

a corner and a vector of edge lengths that refer to an array section of the netCDF variable. The

values to be written are associated with the netCDF variable by assuming that the last dimension

of the netCDF variable varies fastest in the C interface, whereas the �rst dimension of the netCDF

variable varies fastest in the FORTRAN interface. The netCDF �le must be in data mode. 1

In case of an error, ncvarput returns -1; NCVPT returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed corner indices were out of range for the rank of the speci�ed variable. For

example, a negative index, or an index that is larger than the corresponding dimension size

will cause an error.

� The speci�ed edge lengths added to the speci�ed corner would have referenced data out of

range for the rank of the speci�ed variable. For example, an edge length that is larger than

the corresponding dimension size minus the corner index will cause an error.

� The speci�ed netCDF �le is in de�ne mode rather than data mode.

1 The current implementation of XDR on MSDOS systems restricts the amount of data accessed

to no more than 64 Kbytes for each call to ncvarput (or NCVPT or NCVPTC for FORTRAN).

70 NetCDF 2.4 User's Guide

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarput

int ncvarput(int ncid, int varid, const long start[], const long count[],

const void *values);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

start A vector of long integers specifying the index in the variable where the �rst of the data

values will be written. The indices are relative to 0, so for example, the �rst data value

of a variable would have index (0, 0, : : :, 0). The size of start must be the same

as the number of dimensions of the speci�ed variable. The elements of start must

correspond to the variable's dimensions in order. Hence, if the variable is a record

variable, the �rst index would correspond to the starting record number for writing the

data values.

count A vector of long integers specifying the edge lengths along each dimension of the block

of data values to be written. To write a single value, for example, specify count as (1,

1, : : :, 1). The size of count is the number of dimensions of the speci�ed variable.

The elements of count correspond to the variable's dimensions. Hence, if the variable

is a record variable, the �rst element of count corresponds to a count of the number of

records to write.

value Pointer to a block of data values to be written. The order in which the data will be

written to the netCDF variable is with the last dimension of the speci�ed variable

varying fastest. The pointer is declared to be of the type void * because it can point

to data of any of the basic netCDF types. The data should be of the appropriate type

for the netCDF variable. Warning: neither the compiler nor the netCDF software can

detect whether the wrong type of data is used.

Here is an example using ncvarput to add or change all the values of the variable named rh to

0.5 in an existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we

know that rh is dimensioned with time, lat, and lon, and that there are three time values, �ve

lat values, and ten lon values.

Chapter 7: Variables 71

#include <netcdf.h>

: : :

#define TIMES 3

#define LATS 5

#define LONS 10

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long start[] = {0, 0, 0}; /* start at first value */

static long count[] = {TIMES, LATS, LONS};

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

int i;

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

for (i = 0; i < TIMES*LATS*LONS; i++)

rh_vals[i] = 0.5;

/* write values into netCDF variable */

ncvarput(ncid, rh_id, start, count, rh_vals);

FORTRAN Interface: NCVPT

SUBROUTINE NCVPT (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ type VALUES, INTEGER RCODE)

SUBROUTINE NCVPTC(INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNTS(*),

+ CHARACTER*(*) STRING, INTEGER LENSTR,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVPT and NCVPTC, for writing an array of values into a

netCDF variable. The �rst writes numeric values into a variable of numeric type, and the second

writes character values into a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

START A vector of integers specifying the index in the variable where the �rst of the data

values will be written. The indices are relative to 1, so for example, the �rst data value

of a variable would have index (1, 1, : : :, 1). The size of START must be the same

as the number of dimensions of the speci�ed variable. The elements of START must

correspond to the variable's dimensions in order. Hence, if the variable is a record

variable, the last index would correspond to the starting record number for writing the

data values.

72 NetCDF 2.4 User's Guide

COUNT A vector of integers specifying the edge lengths along each dimension of the block of

data values to written. To write a single value, for example, specify COUNT as (1, 1,

: : :, 1). The size of COUNT is the number of dimensions of the speci�ed variable. The

elements of COUNT correspond to the variable's dimensions. Hence, if the variable is

a record variable, the last element of COUNT corresponds to a count of the number of

records to write.

VALUES For NCVPT, the block of data values to be written. The order in which the data will be

written into the speci�ed variable is with the �rst dimension varying fastest (like the

ordinary FORTRAN convention). The data may be of a type corresponding to any of

the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be appropriate

for the type of the netCDF variable. Warning: neither the compiler nor the netCDF

software can detect whether the wrong type of data is used.

STRING For NCVPTC, the characters to be written. The order in which the characters will be

written to the netCDF variable is with the �rst dimension of the speci�ed variable vary-

ing fastest (like the FORTRAN convention). The data may be of a type corresponding

to the netCDF types NCCHAR or NCBYTE.

LENSTR For NCVPTC, the total declared length (in characters) of the STRING argument. This

should be at least as large as the product of the elements of the COUNT vector. Note that

this is not necessarily the same as the value returned by the FORTRAN LEN function,

because an array argument may be provided.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVPT to add or change all the values of the variable named rh to

0.5 in an existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we

know that rh is dimensioned with lon, lat, and time, and that there are ten lon values, �ve lat

values, and three time values.

Chapter 7: Variables 73

INCLUDE 'netcdf.inc'

: : :

PARAMETER (NDIMS=3) ! number of dimensions

PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes

INTEGER NCID, RCODE, TIMES

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS)

DOUBLE RHVALS(LONS, LATS, TIMES)

DATA START /1, 1, 1/ ! start at first value

DATA COUNT /LONS, LATS, TIMES/

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

DO 10 ILON = 1, LONS

DO 10 ILAT = 1, LATS

DO 10 ITIME = 1, TIMES

RHVALS(ILON, ILAT, ITIME) = 0.5

10 CONTINUE

CALL NCVPT (NCID, RHID, START, COUNT, RHVALS, RCODE)

7.7 Write a Subsampled Or Mapped Array of Values: ncvarputg,
NCVPTG, and NCVPGC

The function ncvarputg (or NCVPTG or NCVPGC for FORTRAN) writes a subsampled or mapped

array section of values into a netCDF variable of an open netCDF �le. The subsampled or mapped

array section is speci�ed by giving a corner, a vector of edge lengths, a stride vector, and an index

mapping vector. No assumptions are made about the ordering or size of the dimensions of the data

array. The netCDF �le must be in data mode.

In case of an error, ncvarputg returns -1; NCVPTG and NCVPGC return a nonzero value in rcode.

Possible causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed corner indices were out of range for the rank of the speci�ed variable. For

example, a negative index, or an index that is larger than the corresponding dimension size

will cause an error.

� The speci�ed edge lengths and strides added to the speci�ed corner would have referenced

data out of range for the rank of the speci�ed variable. For example, an edge length that is

larger than the corresponding dimension size minus the corner index will cause an error, as

will accessing two or more points using a stride that is greater than the size of the netCDF

variable in the corresponding dimension.

� A non-positive stride.

� The speci�ed netCDF is in de�ne mode rather than data mode.

74 NetCDF 2.4 User's Guide

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarputg

int ncvarputg(int ncid, int varid, const long start[], const long count[],

const long stride[], const long imap[], const void *values);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

start A vector of long integers specifying the index in the variable where the �rst of the data

values will be written. The indices are relative to 0, so for example, the �rst data value

of a variable would have index (0, 0, : : :, 0). The elements of start correspond, in

order, to the variable's dimensions. Hence, if the variable is a record variable, the �rst

index corresponds to the starting record number for writing the data values.

count A vector of long integers specifying the edge lengths along each dimension of the block

of data values to be written. To write a single value, for example, specify count as (1,

1, : : :, 1). The elements of count correspond, in order, to the variable's dimensions.

Hence, if the variable is a record variable, the �rst element of count corresponds to a

count of the number of records to write.

stride A vector of long integers specifying, for each dimension, the interval between the ac-

cessed values of a netCDF variable. The elements of the stride vector correspond,

in order, to the variable's dimensions. A value of 1 accesses adjacent values of the

netCDF variable in the corresponding dimension; a value of 2 accesses every other

value of the netCDF variable in the corresponding dimension; and so on. A NULL stride

argument obtains the default behavior in which adjacent values are accessed along each

dimension.

imap A vector of long integers specifying, for each dimension, how data values associated

with a netCDF variable are arranged in memory. The o�set, in bytes, from the memory

location pointed to by the value argument to a particular datum is given by the inner

product of the index mapping vector with the coordinates of the datum. (The inner

product of two vectors [x0, x1, : : :, xn] and [y0, y1, : : :, yn] is just x0*y0 + x1*y1 + : : : +

xn*yn.) The vector may contain negative values if the value argument is appropriately

speci�ed. A NULL argument obtains the default behavior in which the memory-resident

values are assumed to have the same structure as the associated netCDF variable.

value Pointer to a block of data values to be written. The order in which the data will

be written to the netCDF variable is with the last dimension of the netCDF variable

varying fastest. The pointer is declared to be of the type void * because it can point

to data of any of the basic netCDF types. The data should be of the appropriate type

for the netCDF variable. Warning: neither the compiler nor the netCDF software can

detect whether the wrong type of data is used.

Chapter 7: Variables 75

Here is an example using ncvarputg to add or change every other value in each dimension of

the variable named rh to 0.5 in an existing netCDF �le named `foo.nc'. Values are taken, using

the same dimensional strides, from points in a 3-dimensional array of structures whose dimensions

are the reverse of the netCDF variable. For simplicity in this example, we assume that we know

that rh is dimensioned with time, lat, and lon, and that there are three time values, �ve lat

values, and ten lon values.

#include <netcdf.h>

: : :

#define TIMES 3

#define LATS 5

#define LONS 10

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long start[] = {0, 0, 0}; /* start at first value */

static long count[] = {TIMES, LATS, LONS};

static long stride[] = {2, 2, 2}; /* every other value */

long imap[3]; /* set to reverse of variable */

struct datum {

int dummy; /* to illustrate mapping vector */

double rh_val; /* actual value to be written */

} data[LONS][LATS][TIMES]; /* reversed array to hold values. */

int itime, ilat, ilon;

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

for (ilon = 0; ilon < LONS; ilon += stride[2])

for (ilat = 0; ilat < LATS; ilat += stride[1])

for (itime = 0; itime < TIMES; itime += stride[0])

data[ilon][ilat][itime].rh_val = 0.5;

/* access every `stride' in-memory value using reversed dimensions */

imap[0] = stride[2]*sizeof(struct datum);

imap[1] = stride[1]*(1+(LONS-1)/stride[0])*imap[0];

imap[2] = stride[0]*(1+(LATS-1)/stride[1])*imap[1];

/* write subsampled or mapped array of values into netCDF variable */

ncvarputg(ncid, rh_id, start, count, stride, imap, &data[0][0][0].rh_val);

FORTRAN Interface: NCVPTG, NCVPGC

SUBROUTINE NCVPTG (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ INTEGER STRIDE(*), INTEGER IMAP(*),

+ type VALUES, INTEGER RCODE)

SUBROUTINE NCVPGC (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

76 NetCDF 2.4 User's Guide

+ INTEGER STRIDE(*), INTEGER IMAP(*),

+ CHARACTER*(*) STRING, INTEGER RCODE)

There are two FORTRAN subroutines, NCVPTG and NCVPGC, for writing a subsampled or mapped

array section of values into a netCDF variable. The �rst writes numeric values into a variable of

numeric type, and the second writes character values into a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

START A vector of integers specifying the index in the variable where the �rst of the data

values will be written. The indices are relative to 1, so for example, the �rst data value

of a variable would have index (1, 1, : : :, 1). The elements of START correspond, in

order, to the variable's dimensions. Hence, if the variable is a record variable, the last

index would correspond to the starting record number for writing the data values.

COUNT A vector of integers specifying the edge lengths along each dimension of the block of

data values to be written. To write a single value, for example, specify COUNT as (1,

1, : : :, 1). The elements of COUNT correspond, in order, to the variable's dimensions.

Hence, if the variable is a record variable, the last element of COUNT corresponds to a

count of the number of records to write.

STRIDE A vector of integers specifying, for each dimension, the interval between the accessed

values of a netCDF variable or the value 0. The elements of the vector correspond, in

order, to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF

variable in the corresponding dimension; a value of 2 accesses every other value of the

netCDF variable in the corresponding dimension; and so on. An 0 argument obtains

the default behavior in which adjacent values are accessed along each dimension.

IMAP A vector of integers specifying, for each dimension, how data values associated with

a netCDF variable are arranged in memory or the value 0. The o�set, in bytes, from

the memory location pointed to by the value argument to a particular datum is given

by the inner product of the index mapping vector with the (origin-0) coordinates of

the datum. (The inner product of two vectors [x1, x2, : : :, xn] and [y1, y2, : : :, yn]

is just x1*y1 + x2*y2 + : : : + xn*yn.) The vector may contain negative values if the

value argument is appropriately speci�ed. A 0 argument obtains the default behavior

in which the memory-resident values are assumed to have the same structure as the

associated netCDF variable.

VALUES For NCVPTG, the block of data values to be written. The order in which the data will

be written is with the �rst dimension of the netCDF variable varying fastest (like the

ordinary FORTRAN convention). The data may be of a type corresponding to any of

the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be appropriate

for the type of the netCDF variable. Warning: neither the compiler nor the netCDF

software can detect whether the wrong type of data is used.

Chapter 7: Variables 77

STRING For NCVPGC, the characters to be written. The order in which the characters will

be written to the netCDF variable is with the �rst dimension of the subsampled or

mapped array varying fastest (like the FORTRAN convention). The data may be of a

type corresponding to the netCDF types NCCHAR or NCBYTE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVPTG to add or change every other value in each dimension of the

variable named rh to 0.5 in an existing netCDF �le named `foo.nc'. Values are taken, using

the same dimensional strides, from a 2-parameter array whose dimensions are the reverse of the

netCDF variable. For simplicity in this example, we assume that we know that rh is dimensioned

with lon, lat, and time, and that there are ten lon values, �ve lat values, and three time values.

INCLUDE 'netcdf.inc'

: : :

PARAMETER (NDIMS=3) ! number of dimensions

PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS),

+ STRIDE(NDIMS), IMAP(NDIMS) ! subsampled or mapped array

DOUBLE DATA(2, TIMES, LATS, LONS) ! rh is second parameter

DATA START /1, 1, 1/ ! start at first value

DATA COUNT /LONS, LATS, TIMES/

DATA STRIDE /2, 2, 2/

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

DO 10 ILON = 1, LONGS, STRIDE(1)

DO 10 ILAT = 1, LATS, STRIDE(2)

DO 10 ITIME = 1, TIMES, STRIDE(3)

DATA(2, ITIME, ILAT, ILON) = 0.5

10 CONTINUE

IMAP(3) = 8*2*2 ! every other point of vector of 2-doubles

IMAP(2) = IMAP(3)*(1+(TIMES-1)/STRIDE(3))*2

IMAP(1) = IMAP(2)*(1+(LATS-1)/STRIDE(2))*2

CALL NCVPTG (NCID, RHID, START, COUNT, STRIDE, IMAP,

+ DATA(2,1,1,1), RCODE)

7.8 Put a Record: ncrecput

The function ncrecput writes a multi-variable record of values (or part of a record of values)

into the record variables of an open netCDF �le. The record is speci�ed by giving a (0-based)

record number. The values to be written are speci�ed by an array of pointers, one for each record

variable, to blocks of values. Each block of values should be of the appropriate size and type for

a record's worth of data for the corresponding record variable. Each such pointer must be either

78 NetCDF 2.4 User's Guide

`0' (a null pointer), to indicate that no data is to be written for that variable, or must point to an

entire record's worth of data of the appropriate type for the corresponding record variable. The

values for each record variable are assumed to be ordered with the last dimension varying fastest.

The netCDF �le must be in data mode.

The ncrecput function is not strictly necessary, since the same data may be written with a

sequence of calls to ncvarput, one for each record variable for which a non-null pointer is speci�ed.

This function is provided in the C interface for convenience only; no corresponding FORTRAN

interface is available, so FORTRAN users should use multiple calls to NCVPT or NCVPTC instead.

To use ncrecput properly, you must know the number, order, and types of record variables in

the netCDF �le, information that can be determined with a call to ncrecinq. If your assumptions

about the number, order, or types of record variables in the �le is incorrect, calling this function

may lead to incorrect results or a memory access error. Warning: neither the compiler nor the

netCDF software can detect errors with the pointer array argument to ncrecput.

In case of a detected error, ncrecput returns -1. Possible causes of detectable errors include:

� The speci�ed record number is less than zero.

� The speci�ed netCDF �le is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncrecput

int ncrecput(int ncid, long recnum, const void *datap[]);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

recnum Record number, specifying the value of the unlimited dimension for which data is to

be written. The �rst record is record number 0. Note that if you specify a value for

recnum that is larger than the current size of the unlimited dimension, intervening

records will be written with �ll values before the data is written in the speci�ed record,

unless ncsetfill has been called to specify no pre�lling.

datap Array of pointers to blocks of data values to be written, one for each record variable.

datap[i], if non-null, must point to an entire record's worth of data for the i-th

record variable. For null pointers, no data will be written for the corresponding record

variables. This permits you to specify an arbitrary subset of record variables. The

data pointed to should be of the appropriate type for each record variable. Warning:

neither the compiler nor the netCDF software can detect whether the wrong type of

data is used.

Here is an example using ncrecput to write the value of a C struct into a netCDF �le with a

single call. This example assumes that record variables of the appropriate shapes and types have

previously been created in the netCDF �le.

Chapter 7: Variables 79

#include <netcdf.h>

: : :

static struct {

char city[20];

nclong date;

float lat;

float lon;

float precip[24]; /* hourly precipitation */

} rec = {

"Pocatello",

930228,

42.92,

-112.60,

{0,0,.1,.2,.2,.3,.2,0,0,0,0,0,0,0,0,0,.3,1.1,0,0,0,0,0,0}

};

int ncid; /* id of open netcdf file */

long recnum; /* number of record to write */

void *datap[5]; /* array of address pointers for record

vars */

: : :

datap[0] = &rec.city[0];

datap[1] = &rec.date;

datap[2] = &rec.lat;

datap[3] = &rec.lon;

datap[4] = &rec.precip[0];

ncrecput(ncid, recnum, datap); /* instead of 5 calls to ncvarput */

7.9 Read a Single Data Value: ncvarget1, NCVGT1, and NCVG1C

The function ncvarget1 (or NCVGT1 or NCVG1C for FORTRAN) gets a single data value from a

variable of an open netCDF �le that is in data mode. Inputs are the netCDF ID, the variable ID,

a multidimensional index that speci�es which value to get, and the address of a location into which

the data value will be read.

In case of an error, ncvarget1 returns -1; NCVGT1 returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed indices were out of range for the rank of the speci�ed variable. For example, a

negative index or an index that is larger than the corresponding dimension size will cause an

error.

� The speci�ed netCDF is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

80 NetCDF 2.4 User's Guide

C Interface: ncvarget1

int ncvarget1(int ncid, int varid, const long mindex[], void *value);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

mindex The multidimensional index of the the data value to be read. The indices are relative

to 0, so for example, the �rst data value of a two-dimensional variable would have index

(0,0). The elements of mindex must correspond to the variable's dimensions. Hence,

if the variable is a record variable, the �rst index is the record number.

value Pointer to the location into which the data value is read. The pointer is declared to be

of the type void * because it can point to data of any of the basic netCDF types. The

data should be of the appropriate type for the netCDF variable. Warning: neither the

compiler nor the netCDF software can detect whether the wrong type for the data

value is used.

Here is an example using ncvarget1 to get the (1,2,3) element of the variable named rh in an

existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we know that

rh is dimensioned with time, lat, and lon, so we want to get the value of rh that corresponds to

the second time value, the third lat value, and the fourth lon value:

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long rh_index[] = {1, 2, 3}; /* where to get value from */

double rh_val; /* where to put it */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

ncvarget1(ncid, rh_id, rh_index, &rh_val);

FORTRAN Interface: NCVGT1

SUBROUTINE NCVGT1 (INTEGER NCID, INTEGER VARID,

+ INTEGER MINDEX(*), type VALUE,

+ INTEGER RCODE)

SUBROUTINE NCVG1C (INTEGER NCID, INTEGER VARID,

+ INTEGER MINDEX(*), CHARACTER CHVAL,

+ INTEGER RCODE)

Chapter 7: Variables 81

There are two FORTRAN subroutines, NCVGT1 and NCVG1C, for reading a single value from a

variable. The �rst reads a numeric value in a variable of numeric type, and the second reads a

character value in a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

MINDEX The multidimensional index of the the data value to be read. The indices are relative

to 1, so for example, the �rst data value of a two-dimensional variable has index (1,1).

The elements of mindex correspond to the variable's dimensions. Hence, if the variable

is a record variable, the last index is the record number.

VALUE For NCVGT1, the location into which the data value will be read. The data may be

of a type corresponding to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or

NCDOUBLE, but must be appropriate for the type of the netCDF variable. Warning:

neither the compiler nor the netCDF software can detect whether the wrong type of

data is used.

CHVAL For NCVG1C, the location into which the data value will be read. This should be of a

type character, corresponding to the netCDF types NCCHAR or NCBYTE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVGT1 to get the (4,3,2) element of the variable named rh in an

existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we know that

rh is dimensioned with lon, lat, and time, so we want to get the value of rh that corresponds to

the fourth lon value, the third lat value, and the second time value:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER RHINDX(3) ! where to get value

DOUBLE PRECISION RHVAL ! put it here

DATA RHINDX /4, 3, 2/

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

CALL NCVGT1 (NCID, RHID, RHINDX, RHVAL, RCODE)

7.10 Read an Array of Values: ncvarget and NCVGT(C)

The function ncvarget (or NCVGT or NCVGTC for FORTRAN) reads an array of values from a

netCDF variable of an open netCDF �le. The array is speci�ed by giving a corner and a vector of

82 NetCDF 2.4 User's Guide

edge lengths. The values are read into consecutive locations with the last (or �rst for FORTRAN)

dimension varying fastest. The netCDF �le must be in data mode. 2

In case of an error, ncvarget returns -1; NCVGT returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed corner indices were out of range for the rank of the speci�ed variable. For

example, a negative index or an index that is larger than the corresponding dimension size will

cause an error.

� The speci�ed edge lengths added to the speci�ed corner would have referenced data out of

range for the rank of the speci�ed variable. For example, an edge length that is larger than

the corresponding dimension size minus the corner index will cause an error.

� The speci�ed netCDF is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarget

int ncvarget(int ncid, int varid, const long start[], const long count[],

void *values);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

start A vector of long integers specifying the index in the variable where the �rst of the data

values will be read. The indices are relative to 0, so for example, the �rst data value

of a variable would have index (0, 0, : : :, 0). The size of start must be the same as

the number of dimensions of the speci�ed variable. The elements of start correspond,

in order, to the variable's dimensions. Hence, if the variable is a record variable, the

�rst index would correspond to the starting record number for reading the data values.

count A vector of long integers specifying the edge lengths along each dimension of the block

of data values to be read. To read a single value, for example, specify count as (1,

1, : : :, 1). The size of count is the number of dimensions of the speci�ed variable.

The elements of count correspond, in order, to the variable's dimensions. Hence, if the

variable is a record variable, the �rst element of count corresponds to a count of the

number of records to read.

value Pointer to the �rst of the locations into which the data values will be read. The order

in which the data will be read from the netCDF variable is with the last dimension

varying fastest. The pointer is declared to be of the type void * because it can point

2 The current implementation of XDR on MSDOS systems restricts the amount of data accessed

to no more than 64 Kbytes for each call to ncvarget (or NCVGT or NCVGTC for FORTRAN).

Chapter 7: Variables 83

to data of any of the basic netCDF types. The data should be of the appropriate type

for the netCDF variable. Warning: neither the compiler nor the netCDF software can

detect whether the wrong type of data is used.

Here is an example using ncvarget to read all the values of the variable named rh from an

existing netCDF �le named `foo.nc'. For simplicity in this example, we assume that we know that

rh is dimensioned with time, lat, and lon, and that there are three time values, �ve lat values,

and ten lon values.

#include <netcdf.h>

: : :

#define TIMES 3

#define LATS 5

#define LONS 10

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long start[] = {0, 0, 0}; /* start at first value */

static long count[] = {TIMES, LATS, LONS};

double rh_vals[TIMES*LATS*LONS]; /* array to hold values */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* read values from netCDF variable */

ncvarget(ncid, rh_id, start, count, rh_vals);

FORTRAN Interface: NCVGT, NCVGTC

SUBROUTINE NCVGT (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ type VALUES, INTEGER RCODE)

SUBROUTINE NCVGTC(INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNTS(*),

+ CHARACTER*(*) STRING, INTEGER LENSTR,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCVGT and NCVGTC, for reading an array of values from

a netCDF variable. The �rst reads numeric values from a variable of numeric type, and the second

reads character values from a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

START A vector of integers specifying the index in the variable where the �rst of the data

values will be read. The indices are relative to 1, so for example, the �rst data value

of a variable would have index (1, 1, : : :, 1). The size of START must be the same as

84 NetCDF 2.4 User's Guide

the number of dimensions of the speci�ed variable. The elements of START correspond,

in order, to the variable's dimensions. Hence, if the variable is a record variable, the

last index would correspond to the starting record number for reading the data values.

COUNT A vector of integers specifying the edge lengths along each dimension of the block of

data values to be read. To read a single value, for example, specify COUNT as (1, 1,

: : :, 1). The size of COUNT is the number of dimensions of the speci�ed variable. The

elements of COUNT correspond, in order, to the variable's dimensions. Hence, if the

variable is a record variable, the last element of COUNT corresponds to a count of the

number of records to read.

VALUES For NCVGT, the locations into which the data values will be read. The order in which the

data will be read from the netCDF variable is with the �rst dimension varying fastest

(like the ordinary FORTRAN convention). The data may be of a type corresponding

to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be

appropriate for the type of the netCDF variable. Warning: neither the compiler nor

the netCDF software can detect whether the wrong type of data is used.

STRING For NCVGTC, the character string into which the character data will be read. The

order in which the characters will be read from the netCDF variable is with the �rst

dimension varying fastest (like the FORTRAN convention). The data may be of a type

corresponding to the netCDF types NCCHAR or NCBYTE.

LENSTR For NCVGTC, the total declared length (in characters) of the STRING argument. This

should be at least as large as the product of the elements of the COUNT vector. Note

that this is not necessarily the same as the value returned by the FORTRAN LEN

function, because an array argument may be provided. NCVGTC will check to make sure

the requested data will �t in LENSTR characters.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCVGT to read all the values of the variable named rh from an existing

netCDF �le named `foo.nc'. For simplicity in this example, we assume that we know that rh is

dimensioned with lon, lat, and time, and that there are ten lon values, �ve lat values, and three

time values.

Chapter 7: Variables 85

INCLUDE 'netcdf.inc'

: : :

PARAMETER (NDIMS=3) ! number of dimensions

PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS)

DOUBLE RHVALS(LONS, LATS, TIMES)

DATA START /1, 1, 1/ ! start at first value

DATA COUNT /LONS, LATS, TIMES/

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)! get ID

CALL NCVGT (NCID, RHID, START, COUNT, RHVALS, RCODE)

7.11 Read a Subsampled Or Mapped Array of Values: ncvargetg,
NCVGTG and NCVGGC

The function ncvargetg (or NCVGTG or NCVGGC for FORTRAN) reads a subsampled or mapped

array section of values from a netCDF variable of an open netCDF �le. The subsampled or mapped

array section is speci�ed by giving a corner, a vector of edge lengths, a stride vector, and an index

mapping vector. The values are read with the last (or �rst for FORTRAN) dimension of the

netCDF variable varying fastest. The netCDF �le must be in data mode.

In case of an error, ncvargetg returns -1; NCVGTG and NCVGGC return a nonzero value in rcode.

Possible causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed corner indices were out of range for the rank of the speci�ed variable. For

example, a negative index or an index that is larger than the corresponding dimension size will

cause an error.

� The speci�ed edge lengths and strides added to the speci�ed corner would have referenced

data out of range for the rank of the speci�ed variable. For example, an edge length that is

larger than the corresponding dimension size minus the corner index will cause an error, as

will accessing two or more points using a stride that is greater than the size of the netCDF

variable in the corresponding dimension.

� A non-positive stride.

� The speci�ed netCDF is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvargetg

int ncvargetg(int ncid, int varid, const long start[], const long count[],

86 NetCDF 2.4 User's Guide

const long stride[], const long imap[], void *values);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

start A vector of long integers specifying the index in the variable where the �rst of the data

values will be read. The indices are relative to 0, so for example, the �rst data value

of a variable would have index (0, 0, : : :, 0). The elements of start correspond, in

order, to the variable's dimensions. Hence, if the variable is a record variable, the �rst

index corresponds to the starting record number for reading the data values.

count A vector of long integers specifying the edge lengths along each dimension of the block

of the block of data values to be read. To read a single value, for example, specify

count as (1, 1, : : :, 1). The elements of count correspond, in order, to the variable's

dimensions. Hence, if the variable is a record variable, the �rst element of count

corresponds to a count of the number of records to read.

stride A vector of long integers specifying, for each dimension, the interval between the ac-

cessed values of a netCDF variable. The elements of the stride vector correspond,

in order, to the variable's dimensions. A value of 1 accesses adjacent values of the

netCDF variable in the corresponding dimension; a value of 2 accesses every other

value of the netCDF variable in the corresponding dimension; and so on. A NULL stride

argument obtains the default behavior in which adjacent values are accessed along each

dimension.

imap A vector of long integers specifying, for each dimension, how data values associated

with a netCDF variable are arranged in memory. The o�set, in bytes, from the memory

location pointed to by the value argument to a particular datum is given by the inner

product of the index mapping vector with the coordinates of the datum. (The inner

product of two vectors [x0, x1, : : :, xn] and [y0, y1, : : :, yn] is just x0*y0 + x1*y1 + : : : +

xn*yn.) The vector may contain negative values if the value argument is appropriately

speci�ed. A NULL argument obtains the default behavior in which the memory-resident

values are assumed to have the same structure as the associated netCDF variable.

value Pointer to the �rst of the locations into which the data values will be read. The order

in which the data will be read from the netCDF variable is with the last dimension

varying fastest. The pointer is declared to be of the type void * because it can point

to data of any of the basic netCDF types. The data should be of the appropriate type

for the netCDF variable. Warning: neither the compiler nor the netCDF software can

detect whether the wrong type of data is used.

Here is an example using ncvargetg to read every other value in each dimension of the variable

named rh from an existing netCDF �le named `foo.nc'. Values are assigned, using the same

dimensional strides, to points in a 3-dimensional array of structures whose dimensions are the

Chapter 7: Variables 87

reverse of the netCDF variable. For simplicity in this example, we assume that we know that rh is

dimensioned with time, lat, and lon, and that there are three time values, �ve lat values, and

ten lon values.

#include <netcdf.h>

: : :

#define TIMES 3

#define LATS 5

#define LONS 10

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static long start[] = {0, 0, 0}; /* start at first value */

static long count[] = {TIMES, LATS, LONS};

static long stride[] = {2, 2, 2}; /* every other value */

long imap[3]; /* set to reverse of variable */

struct datum {

int dummy; /* to illustrate mapping vector usage */

double rh_val; /* actual value to be read */

} data[TIMES][LATS][LONS]; /* array to hold values */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* access every `stride' in-memory value using reversed dimensions */

imap[0] = stride[2]*sizeof(struct datum);

imap[1] = stride[1]*(1+(LONS-1)/stride[0])*imap[0];

imap[2] = stride[0]*(1+(LATS-1)/stride[1])*imap[1];

/* read values from netCDF variable */

ncvargetg(ncid, rh_id, start, count, stride, imap, &data[0][0][0].rh_val);

: : :

FORTRAN Interface: NCVGTG, NCVGGC

SUBROUTINE NCVGTG (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ INTEGER STRIDE(*), INTEGER IMAP(*),

+ type VALUES, INTEGER RCODE)

SUBROUTINE NCVGGC (INTEGER NCID, INTEGER VARID,

+ INTEGER START(*), INTEGER COUNT(*),

+ INTEGER STRIDE(*), INTEGER IMAP(*),

+ CHARACTER*(*) STRING, INTEGER RCODE)

There are two FORTRAN subroutines, NCVGTG and NCVGGC, for reading a subsampled or mapped

array section of values from a netCDF variable. The �rst reads numeric values from a variable of

numeric type, and the second reads character values from a variable of character type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

88 NetCDF 2.4 User's Guide

VARID Variable ID.

START A vector of integers specifying the index in the variable from which the �rst of the data

values will be read. The indices are relative to 1, so for example, the �rst data value

of a variable would have index (1, 1, : : :, 1). The elements of START correspond, in

order, to the variable's dimensions. Hence, if the variable is a record variable, the last

index would correspond to the starting record number for reading the data values.

COUNT A vector of integers specifying the edge lengths along each dimension of the block of

data values to be read. To read a single value, for example, specify COUNT as (1,

1, : : :, 1). The elements of COUNT correspond, in order, to the variable's dimensions.

Hence, if the variable is a record variable, the last element of COUNT corresponds to a

count of the number of records to read.

STRIDE A vector of integers specifying, for each dimension, the interval between the accessed

values of a netCDF variable or the value 0. The elements of the vector correspond, in

order, to the variable's dimensions. A value of 1 accesses adjacent values of the netCDF

variable in the corresponding dimension; a value of 2 accesses every other value of the

netCDF variable in the corresponding dimension; and so on. An 0 argument obtains

the default behavior in which adjacent values are accessed along each dimension.

IMAP A vector of long integers specifying, for each dimension, how data values associated

with a netCDF variable are arranged in memory or the value 0. The o�set, in bytes,

from the memory location pointed to by the value argument to a particular datum is

given by the inner product of the index mapping vector with the (origin-0) coordinates

of the datum. (The inner product of two vectors [x1, x2, : : :, xn] and [y1, y2, : : :, yn]

is just x1*y1 + x2*y2 + : : : + xn*yn.) The vector may contain negative values if the

value argument is appropriately speci�ed. A 0 argument obtains the default behavior

in which the memory-resident values are assumed to have the same structure as the

associated netCDF variable.

VALUES For NCVGTG, the locations into which the data values will be read. The order in which the

data will be read from the netCDF variable is with the �rst dimension varying fastest

(like the ordinary FORTRAN convention). The data may be of a type corresponding

to any of the netCDF types NCSHORT, NCLONG, NCFLOAT, or NCDOUBLE, but must be

appropriate for the type of the netCDF variable. Warning: neither the compiler nor

the netCDF software can detect whether the wrong type of data is used.

STRING For NCVGGC, the character string into which the character data will be read. The

order in which the characters will be read from the netCDF variable is with the �rst

dimension varying fastest (like the FORTRAN convention). The data may be of a type

corresponding to the netCDF types NCCHAR or NCBYTE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Chapter 7: Variables 89

Here is an example using NCVGTG to read every other value in each dimension of the variable

named rh from an existing netCDF �le named `foo.nc'. Values are assigned, using the same di-

mensional strides, to a 2-parameter array whose dimensions are the reverse of the netCDF variable.

For simplicity in this example, we assume that we know that rh is dimensioned with lon, lat, and

time, and that there are ten lon values, �ve lat values, and three time values.

INCLUDE 'netcdf.inc'

: : :

PARAMETER (NDIMS=3) ! number of dimensions

PARAMETER (TIMES=3, LATS=5, LONS=10) ! dimension sizes

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER START(NDIMS), COUNT(NDIMS),

+ STRIDE(NDIMS), IMAP(NDIMS)

DOUBLE DATA(2, TIMES, LATS, LONS) ! rh is second parameter

DATA START /1, 1, 1/ ! start at first value

DATA COUNT /LONS, LATS, TIMES/

DATA STRIDE /2, 2, 2/

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

IMAP(3) = 8*2*2 ! every other point of vector of 2-doubles

IMAP(2) = IMAP(3)*(1+(TIMES-1)/STRIDE(3))*2

IMAP(1) = IMAP(2)*(1+(LATS-1)/STRIDE(2))*2

CALL NCVGTG (NCID, RHID, START, COUNT, STRIDE, IMAP,

+ DATA(2,1,1,1), RCODE)

7.12 Get a Record: ncrecget

The function ncrecget reads a multi-variable record of values (or part of a record of values)

from the record variables of an open netCDF �le. The record is speci�ed by giving a record number.

The locations into which the data will be read are speci�ed by an array of pointers, one for each

record variable, to blocks of data. Each block of data should be of the appropriate size and type for

a record's worth of data for the corresponding record variable. Each such pointer must be either

`0' (a null pointer), to indicate that no data is to be read for that variable, or must point to space

for an entire record's worth of data of the appropriate type for the corresponding record variable.

The values for each record variable will be ordered with the last dimension of the netCDF variable

varying fastest. The netCDF �le must be in data mode.

The ncrecget function is not strictly necessary, since the same data may be read with a sequence

of calls to ncvarget, one for each record variable for which a non-null pointer is speci�ed. This

function is provided in the C interface for convenience only; no corresponding FORTRAN interface

is available, so FORTRAN users should use multiple calls to NCVGT or NCVGTC instead.

90 NetCDF 2.4 User's Guide

To use ncrecget properly, you must know the number, order, and types of record variables in

the netCDF �le, information that can be determined with a call to ncrecinq. If your assumptions

about the number, order, or types of record variables in the �le is incorrect, calling this function

may lead to incorrect results or a memory access error. Warning: neither the compiler nor the

netCDF software can detect errors with the pointer array argument to ncrecget.

In case of a detected error, ncrecget returns -1. Possible causes of detectable errors include:

� The speci�ed record number is less than zero.

� The speci�ed netCDF �le is in de�ne mode rather than data mode.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncrecget

int ncrecget(int ncid, long recnum, void *datap[]);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

recnum Record number, specifying the value of the unlimited dimension for which data is to

be read. The �rst record is record number 0.

datap Array of pointers to blocks of data into which the requested values will be read, one

for each record variable. datap[i], if non-null, must point to enough space to hold an

entire record's worth of data for the i-th record variable. For null pointers, no data

will be read for the corresponding record variables. This permits you to specify an

arbitrary subset of record variables. The data pointed to should be of the appropriate

type for each record variable. Warning: neither the compiler nor the netCDF software

can detect whether the wrong type of data is used.

Here is an example using ncrecget to read values into several C arrays and scalars with a

single call. This example assumes that record variables of the appropriate shapes and types have

previously been created in the netCDF �le.

Chapter 7: Variables 91

#include <netcdf.h>

: : :

static struct {

char city[20];

nclong date;

float lat;

float lon;

float precip[24];

} rec[10];

int ncid; /* id of open netcdf file */

long i; /* number of record to read */

void *datap[5]; /* array of address pointers for record vars */

: : :

/* Get first 10 records of data */

for(i=0; i<10; i++) {

datap[0] = &rec[i].city[0];

datap[1] = &rec[i].date;

datap[2] = &rec[i].lat;

datap[3] = &rec[i].lon;

datap[4] = &rec[i].precip[0];

ncrecget(ncid, i, datap); /* instead of 5 calls to ncvarget */

}

7.13 Reading andWriting Character String Values

Character strings are not a primitive netCDF data type, in part because FORTRAN does not

support the abstraction of variable-length character strings (the FORTRAN LEN function returns

the static length of a character string, not its dynamic length). As a result, a character string

cannot be written or read as a single object in the netCDF interface. Instead, a character string

must be treated as an array of characters, and array access must be used to read and write character

strings as variable data in netCDF �les. Furthermore, variable-length strings are not supported by

the netCDF interface except by convention; for example, you may treat a zero byte as terminating

a character string, but you must explicitly specify the length of strings to be read from and written

to netCDF variables.

Character strings as attribute values are easier to use, since the strings are treated as a single

unit for access. However, the value of a character-string attribute is still an array of characters

with an explicit length that must be speci�ed when the attribute is de�ned.

When you de�ne a variable that will have character-string values, use a character-position

dimension as the most quickly varying dimension for the variable (the last dimension for the variable

in C, the �rst in FORTRAN). The size of the character-position dimension will be the maximum

string length of any value to be stored in the character-string variable. Space for maximum-size

strings will be allocated in the disk representation of character-string variables whether you use the

92 NetCDF 2.4 User's Guide

space or not. If two or more variables have the same maximum length, the same character-position

dimension may be used in de�ning the variable shapes.

To write a character-string value into a character-string variable, use array access. This requires

that you specify both a corner and a vector of edge lengths. The character-position dimension at

the corner should be zero (one for FORTRAN). If the length of the string to be written is n, then

the vector of edge lengths will specify n in the character-position dimension, and one for all the

other dimensions, i.e., (1, 1, : : :, 1, n) or (n, 1, 1, : : :, 1) in FORTRAN.

C Interface

In C, �xed-size strings may be written to a netCDF �le without the terminating zero byte, to

save space. Variable-length strings should be written with a terminating zero byte so that the

intended length of the string can be determined when it is later read.

Here is an example that de�nes a record variable, tx, for character strings and stores a character-

string value into the third record using ncvarput. In this example, we assume the string variable

and data are to be added to an existing netCDF �le named `foo.nc' that already has an unlimited

record dimension time.

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int chid; /* dimension ID for char positions */

int timeid; /* dimension ID for record dimension */

int tx_id; /* variable ID */

#define TDIMS 2 /* rank of tx variable */

int tx_dims[TDIMS]; /* variable shape */

long tx_start[TDIMS];

long tx_count[TDIMS];

static char tx_val[] =

"example string"; /* string to be put */

: : :

ncid = ncopen("foo.nc", NC_WRITE);

ncredef(ncid); /* enter define mode */

: : :

/* define character-position dimension for strings of max length 40 */

chid = ncdimdef(ncid, "chid", 40L);

: : :

/* define a character-string variable */

tx_dims[0] = timeid;

tx_dims[1] = chid; /* character-position dimension last */

tx_id = ncvardef (ncid, "tx", NC_CHAR, TDIMS, tx_dims);

: : :

ncendef(ncid); /* leave define mode */

: : :

/* write tx_val into tx netCDF variable in record 3 */

Chapter 7: Variables 93

tx_start[0] = 3; /* record number to write */

tx_start[1] = 0; /* start at beginning of variable */

tx_count[0] = 1; /* only write one record */

tx_count[1] = strlen(tx_val) + 1; /* number of chars to write */

ncvarput(ncid, tx_id, tx_start, tx_count, tx_val);

FORTRAN Interface

In FORTRAN, �xed-size strings may be written to a netCDF �le without a terminating char-

acter, to save space. Variable-length strings should follow the C convention of writing strings with

a terminating zero byte so that the intended length of the string can be determined when it is later

read by either C or FORTRAN programs.

The FORTRAN interface for reading and writing strings requires the use of di�erent subroutines

for accessing string values and numeric values, because standard FORTRAN does not permit the

same formal parameter to be used for both character values and numeric values. An additional

argument, specifying the declared length of the character string passed as a value, is required for

NCVPTC and NCVGTC. The actual length of the string is speci�ed as the value of the edge-length

vector corresponding to the character-position dimension.

Here is an example that de�nes a record variable, tx, for character strings and stores a character-

string value into the third record using NCVPTC. In this example, we assume the string variable

and data are to be added to an existing netCDF �le named `foo.nc' that already has an unlimited

record dimension time.

INCLUDE 'netcdf.inc'

: : :

INTEGER TDIMS, TXLEN

PARAMETER (TDIMS=2) ! number of TX dimensions

PARAMETER (TXLEN = 15) ! length of example string

INTEGER NCID, RCODE

INTEGER CHID ! char position dimension id

INTEGER TIMEID ! record dimension id

INTEGER TXID ! variable ID

INTEGER TXDIMS(TDIMS) ! variable shape

INTEGER TSTART(TDIMS), TCOUNT(TDIMS)

CHARACTER*40 TXVAL ! max length 40

DATA TXVAL /'example string'/

: : :

TXVAL(TXLEN:TXLEN) = CHAR(0) ! null terminate

: : :

NCID = NCOPN('foo.nc', NCWRITE, RCODE)

CALL NCREDF(NCID, RCODE) ! enter define mode

: : :

* define character-position dimension for strings of max length 40

CHID = NCDDEF(NCID, "chid", 40, RCODE)

: : :

94 NetCDF 2.4 User's Guide

* define a character-string variable

TXDIMS(1) = CHID ! character-position dimension first

TXDIMS(2) = TIMEID

TXID = NCVDEF(NCID, "tx", NCCHAR, TDIMS, TXDIMS, RCODE)

: : :

CALL NCENDF(NCID, RCODE) ! leave define mode

: : :

* write txval into tx netCDF variable in record 3

TSTART(1) = 0 ! start at beginning of variable

TSTART(2) = 3 ! record number to write

TCOUNT(1) = TXLEN ! number of chars to write

TCOUNT(2) = 1 ! only write one record

CALL NCVPTC (NCID, TXID, TSTART, TCOUNT, TXVAL, 40, RCODE)

7.14 Fill Values

What happens when you try to read a value that was never written in an open netCDF �le?

You might expect that this should always be an error, and that you should get an error message

or an error status returned. You do get an error if you try to read data from a netCDF �le that is

not open for reading, if the variable ID is invalid for the speci�ed netCDF �le, or if the speci�ed

indices are not properly within the range de�ned by the dimension sizes of the speci�ed variable.

Otherwise, reading a value that was not written returns a special �ll value used to �ll in any

unde�ned values when a netCDF variable is �rst written.

You may ignore �ll values and use the entire range of a netCDF data type, but in this case you

should make sure you write all data values before reading them. If you know you will be writing all

the data before reading it, you can specify that no pre�lling of variables with �ll values will occur

by calling ncsetfill before writing. This may provide a signi�cant performance gain for netCDF

writes.

The variable attribute _FillValue is used to specify the �ll value. The default �ll values for

each type are de�ned in the include �le `netcdf.h' (or `netcdf.inc' for FORTRAN).

One di�erence between the netCDF byte and character types is that the two types have di�erent

default �ll values. The default �ll value for characters is the zero byte, a useful value for detecting

the end of variable-length C character strings. If you need a �ll value for a byte variable, it is

recommended that you explicitly de�ne an appropriate _FillValue attribute, as generic utilities

such as ncdump will not assume a default �ll value for byte variables.

7.15 Rename a Variable: ncvarrename and NCVREN

The function ncvarrename (or NCVREN for FORTRAN) changes the name of a netCDF variable

in an open netCDF. If the new name is longer than the old name, the netCDF �le must be in de�ne

mode. You cannot rename a variable to have the name of any existing variable.

Chapter 7: Variables 95

In case of an error, ncvarrename returns -1; NCVREN returns a nonzero value in rcode. Possible

causes of errors include:

� The new name is in use as the name of another variable.

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncvarrename

int ncvarrename(int ncid, int varid, const char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID.

name New name for the speci�ed variable.

Here is an example using ncvarrename to rename the variable rh to rel_hum in an existing

netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

ncredef(ncid); /* put in define mode to rename variable */

rh_id = ncvarid (ncid, "rh");

ncvarrename (ncid, rh_id, "rel_hum");

ncendef(ncid); /* leave define mode */

FORTRAN Interface: NCVREN

SUBROUTINE NCVREN (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) NEWNAM, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

NEWNAM New name for the speci�ed variable.

Here is an example using NCVREN to rename the variable rh to rel_hum in an existing netCDF

�le named `foo.nc':

96 NetCDF 2.4 User's Guide

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

CALL NCREDF (CDFFID, RCODE) ! enter definition mode

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

CALL NCVREN (NCID, RHID, 'rel_hum', RCODE)

CALL NCENDF (CDFFID, RCODE) ! leave definition mode

7.16 Get Number of Bytes for a Data Type: nctypelen and
NCTLEN

The function nctypelen (or NCTLEN for FORTRAN) returns the number of bytes per netCDF

data type.

In case of an error, nctypelen returns -1; NCTLEN returns a nonzero value in rcode. One possible

cause of errors is:

� The speci�ed data type is not a valid netCDF data type.

C Interface: nctypelen

int nctypelen (nc_type datatype);

datatype One of the set of prede�ned netCDF data types. The type of this parameter, nc_

type, is de�ned in the netCDF header �le. The valid netCDF data types are NC_BYTE,

NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

Here is an example using nctypelen to determine how many bytes are required to store a single

value of the variable rh in an existing netCDF �le named `foo.nc':

Chapter 7: Variables 97

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

nc_type rh_type; /* variable type */

int rh_ndims; /* number of dims */

int rh_dims[MAX_VAR_DIMS]; /* variable shape */

int rh_natts; /* number of attributes */

int rhbytes; /* number of bytes per value for "rh" */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

/* get type. we don't need name, since we already know it */

ncvarinq (ncid, rh_id, 0, &rh_type, &rh_ndims, rh_dims,

&rh_natts);

rhbytes = nctypelen (rh_type);

FORTRAN Interface: NCTLEN

INTEGER FUNCTION NCTLEN (INTEGER TYPE ,INTEGER RCODE)

TYPE One of the set of prede�ned netCDF data types. The valid netCDF data types are

NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCTLEN to determine how many bytes are required to store a single

value of the variable rh in an existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID ! netCDF ID

INTEGER RHID ! variable ID

CHARACTER*31 RHNAME ! variable name

INTEGER RHTYPE ! variable type

INTEGER RHN ! number of dimensions

INTEGER RHDIMS(MAXVDIMS) ! variable shape

INTEGER RHNATT ! number of attributes

INTEGER RHBYTS ! bytes per value

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)

* get type of "rh"

CALL NCVINQ (NCID, RHID, RHNAME, RHTYPE, RHN, RHDIMS, RHNATT,

+ RCODE)

RHBYTS = NCTLEN (RHTYPE)

98 NetCDF 2.4 User's Guide

7.17 Get Information About Record Variables: ncrecinq

The function ncrecinq returns information about the record variables (variables that use the

unlimited dimension) in a netCDF �le. The information returned is the number of record variables,

their variable IDs, and the size (in bytes) for a record's worth of data for each record variable.

The ncrecinq function is not strictly necessary, since the information it returns can be computed

from information returned by ncinquire, ncdiminq, and ncvarinq functions or their FORTRAN

counterparts. This function is provided in the C interface for convenience only, to assist in using

the C functions ncrecput and ncrecget.

In case of an error, ncrecinq returns -1. Possible causes of errors include:

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncrecinq

int ncrecinq(int ncid, int* nrvars, int rvarids[], long rsizes[]);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

nrvars Number of record variables.

rvarids Returned vector of nrvars variable IDs for the record variables in this netCDF �le.

The caller must allocate enough space for a vector of at least nrvars integers to be

returned. The maximum possible number of variable IDs returned is given by the

prede�ned constant MAX_NC_VARS. If this parameter is given as `0' (a null pointer), no

vector will be returned so no space to hold the record variable IDs needs to be declared

or allocated.

rsizes Returned vector of nrvars sizes for the record variables in this netCDF �le. The size of

a record variable is the number of bytes required to hold a record's worth of data, which

is the product of the non-record dimensions and the size of data type, in bytes. The

caller must allocate enough space for a vector of at least nrvars longs to be returned.

The maximum possible number of variable IDs returned is given by the prede�ned

constant MAX_NC_VARS. If this parameter is given as `0' (a null pointer), no vector

will be returned so no space to hold the record variable sizes needs to be declared or

allocated.

Here is an example using ncrecinq to �nd out about the record variables in an existing netCDF

�le named `foo.nc':

Chapter 7: Variables 99

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int nrvars; /* number of record variables */

int rvarids[MAX_NC_VARS]; /* IDs of record variables */

long rvarsizes[MAX_NC_VARS]; /* record sizes of record variables */

: : :

ncid = ncopen ("foo.nc", NC_NOWRITE);

: : :

ncrecinq (ncid, &nrvars, rvarids, rvarsizes);

100 NetCDF 2.4 User's Guide

Chapter 8: Attributes 101

8 Attributes

Attributes may be associated with each netCDF variable to specify such properties as units,

special values, maximum and minimum valid values, scaling factors, and o�sets. Attributes for

a netCDF �le are de�ned when the �le is �rst created, while the netCDF �le is in de�ne mode.

Additional attributes may be added later by reentering de�ne mode. A netCDF attribute has a

netCDF variable to which it is assigned, a name, a type, a length, and a sequence of one or more

values. An attribute is designated by its variable ID and name, except in one case (ncattname or

NCANAM in FORTRAN), where attributes are designated by variable ID and number because their

names are unknown.

The attributes associated with a variable are typically de�ned right after the variable is created,

while still in de�ne mode. The data type, length, and value of an attribute may be changed even

when in data mode, as long as the changed attribute requires no more space than the attribute as

originally de�ned.

It is also possible to have attributes which are not associated with any variable. These are called

global attributes and are identi�ed by using NC_GLOBAL as a variable pseudo-ID. Global attributes

are usually related to the netCDF �le as a whole and may be used for purposes such as providing

a title or processing history for a netCDF dataset.

Operations supported on attributes are:

� Create an attribute, given its variable ID, name, data type, length, and value.

� Get attribute's data type and length from its variable ID and name.

� Get attribute's value from its variable ID and name.

� Copy attribute from one netCDF variable to another.

� Get name of attribute from its number.

� Rename an attribute.

� Delete an attribute.

8.1 Attribute Conventions

Names commencing with underscore (`_') are reserved for use by the netCDF library. Most

generic applications that process netCDF �les assume standard attribute conventions and it is

strongly recommended that these be followed unless there are good reasons for not doing so. Below

we list the names and meanings of recommended standard attributes that have proven useful. Note

that some of these (e.g. units, valid_range, scale_factor) assume numeric data and should not

be used with character data.

units A character string that speci�es the units used for the variable's data. Unidata has

developed a freely-available library of routines to convert between character string and

102 NetCDF 2.4 User's Guide

binary forms of unit speci�cations and to perform various useful operations on the bi-

nary forms. This library is used in some netCDF applications. Using the recommended

units syntax permits data represented in conformable units to be automatically con-

verted to common units for arithmetic operations. See Appendix A [Units], page 141,

for more information.

long_name

A long descriptive name. This could be used for labeling plots, for example. If a

variable has no long_name attribute assigned, the variable name should be used as a

default.

valid_min

A scalar specifying the minimum valid value for this variable.

valid_max

A scalar specifying the maximum valid value for this variable.

valid_range

A vector of two numbers specifying the minimum and maximum valid values for this

variable, equivalent to specifying values for both valid_min and valid_max attributes.

Any of these attributes de�ne the valid range. The attribute valid_range must not

be de�ned if either valid_min or valid_max is de�ned.

Generic applications should treat values outside the valid range as missing. The type

of each valid_range, valid_min and valid_max attribute should match the type of

its variable (except that for byte data, these can be of a signed integral type to specify

the intended range).

If neither valid_min, valid_max nor valid_range is de�ned then generic applications

should de�ne a valid range as follows. If the data type is byte and _FillValue is not

explicitly de�ned, then the valid range should include all possible values. Otherwise,

the valid range should exclude the the _FillValue as follows. If the _FillValue is

positive then it de�nes a valid maximum, otherwise it de�nes a valid minimum. For

integer types, there should be a di�erence of 1 between the _FillValue and this valid

minimum or maximum. For
oating point types, the di�erence should be twice the

minimum possible (1 in the least signi�cant bit) to allow for rounding error.

scale_factor

If present for a variable, the data are to be multiplied by this factor after the data are

read by the application that accesses the data.

add_offset

If present for a variable, this number is to be added to the data after it is read by the

application that accesses the data. If both scale_factor and add_offset attributes

are present, the data are �rst scaled before the o�set is added. The attributes scale_

factor and add_offset can be used together to provide simple data compression to

Chapter 8: Attributes 103

store low-resolution
oating-point data as small integers in a netCDF �le. When scaled

data are written, the application should �rst subtract the o�set and then divide by the

scale factor.

When scale_factor and add_offset are used for packing, the associated variable

(containing the packed data) is typically of type byte or short, whereas the unpacked

values are intended to be of type
oat or double. The attributes scale_factor and

add_offset should both be of the type intended for the unpacked data, e.g.
oat or

double.

_FillValue

The _FillValue attribute speci�es the �ll value used to pre-�ll disk space allocated to

the variable. Such pre-�ll occurs unless no�ll mode is set using ncsetfill (or NCSFIL

for FORTRAN). See Section 5.10 [Set Fill Mode for Writes: ncset�ll and NCSFIL],

page 48, for details. The �ll value is returned when reading values that were never

written. If _FillValue is de�ned then it should be scalar and of the same type as the

variable. The _FillValue is typically outside the valid range and therefore treated by

generic applications as missing. However it is legal for _FillValue to be within the

valid range so that it is treated like any other valid value. It is not necessary to de�ne

your own _FillValue attribute for a variable if the default �ll value for the type of

the variable is adequate. However, use of the default �ll value for data type byte is

not recommended. Note that if you change the value of this attribute, the changed

value applies only to subsequent writes; previously written data are not changed. See

Section 7.14 [Fill Values], page 94, for more information.

missing_value

This attribute is not treated in any special way by the library or conforming generic ap-

plications, but is often useful documentation and may be used by speci�c applications.

The missing_value attribute can be a scalar or vector containing values indicating

missing data. These values should all be outside the valid range so that generic ap-

plications will treat them as missing. See Section 7.14 [Fill Values], page 94, for more

information.

signedness

Deprecated attribute, originally designed to indicate whether byte values should be

treated as signed or unsigned. The attributes valid_min and valid_max may be used

for this purpose. For example, if you intend that a byte variable store only non-negative

values, you can use valid_min = 0 and valid_max = 255. This attribute is ignored by

the netCDF library.

C_format A character array providing the format that should be used by C applications to print

values for this variable. For example, if you know a variable is only accurate to three

signi�cant digits, it would be appropriate to de�ne the C_format attribute as "%.3g".

The ncdump utility program uses this attribute for variables for which it is de�ned. The

104 NetCDF 2.4 User's Guide

format applies to the scaled (internal) type and value, regardless of the presence of the

scaling attributes scale_factor and add_offset.

FORTRAN_format

A character array providing the format that should be used by FORTRAN applications

to print values for this variable. For example, if you know a variable is only accurate to

three signi�cant digits, it would be appropriate to de�ne the FORTRAN_format attribute

as "(G10.3)".

title A global attribute that is a character array providing a succinct description of what is

in the dataset.

history A global attribute for an audit trail. This is a character array with a line for each

invocation of a program that has modi�ed the �le. Well-behaved generic netCDF

applications should append a line containing: date, time of day, user name, program

name and command arguments.

Conventions

If present, `Conventions' is a global attribute that is a character array for the name

of the conventions followed by the �le, in the form of a string that is interpreted as

a directory name relative to a directory that is a repository of documents describing

sets of discipline-speci�c conventions. This permits a hierarchical structure for conven-

tions and provides a place where descriptions and examples of the conventions may be

maintained by the de�ning institutions and groups. The conventions directory name is

currently interpreted relative to the directory pub/netcdf/Conventions/ on the host

machine ftp.unidata.ucar.edu. Alternatively, a full URL speci�cation may be used

to name a WWW site where documents that describe the conventions are maintained.

For example, if a group named NUWG agrees upon a set of conventions for dimension

names, variable names, required attributes, and netCDF representations for certain

discipline-speci�c data structures, they may store a document describing the agreed-

upon conventions in a �le in the NUWG/ subdirectory of the Conventions directory.

Files that followed these conventions would contain a global Conventions attribute

with value "NUWG".

Later, if the group agrees upon some additional conventions for a speci�c subset of

NUWG data, for example time series data, the description of the additional conventions

might be stored in the NUWG/Time_series/ subdirectory, and �les that adhered to

these additional conventions would use the global Conventions attribute with value

"NUWG/Time_series", implying that this �le adheres to the NUWG conventions and

also to the additional NUWG time-series conventions.

Chapter 8: Attributes 105

8.2 Create an Attribute: ncattput, NCAPT, and NCAPTC

The function ncattput (or NCAPT or NCAPTC for FORTRAN) adds or changes a variable attribute

or global attribute of an open netCDF �le. If this attribute is new, or if the space required to store

the attribute is greater than before, the netCDF �le must be in de�ne mode.

In case of an error, ncattput returns -1; NCAPT returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed netCDF type is invalid.

� The speci�ed length is negative.

� The speci�ed open netCDF �le is in data mode and the speci�ed attribute would expand.

� The speci�ed open netCDF �le is in data mode and the speci�ed attribute does not already

exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncattput

int ncattput(int ncid, int varid, const char* name, nc_type datatype,

int len, const void* values);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID of the variable to which the attribute will be assigned or NC_GLOBAL for a

global attribute.

name Attribute name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (`_'). Case is signi�cant. Attribute

name conventions are assumed by some netCDF generic applications, e.g., units as the

name for a string attribute that gives the units for a netCDF variable. See Section 8.1

[Attribute Conventions], page 101, for examples of attribute conventions.

datatype One of the set of prede�ned netCDF data types. The type of this parameter, nc_

type, is de�ned in the netCDF header �le. The valid netCDF data types are NC_BYTE,

NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE.

len Number of values provided for the attribute. If the attribute is of type NC_CHAR, this

is one more than the string length (since the terminating zero byte is stored).

values Pointer to one or more data values. The pointer is declared to be of the type void *

because it can point to data of any of the basic netCDF types. The data should be

of the appropriate type for the netCDF attribute. Warning: neither the compiler nor

the netCDF software can detect whether the wrong type of data is used.

Here is an example using ncattput to add a variable attribute named valid_range for a netCDF

variable named rh and a global attribute named title to an existing netCDF �le named `foo.nc':

106 NetCDF 2.4 User's Guide

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

static double rh_range[] = {0.0, 100.0}; /* attribute vals */

static char title[] = "example netCDF file";

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

ncredef(ncid); /* enter define mode */

rh_id = ncvarid (ncid, "rh");

: : :

ncattput (ncid, rh_id, "valid_range", NC_DOUBLE, 2, rh_range);

ncattput (ncid, NC_GLOBAL, "title", NC_CHAR, strlen(title)+1,

title);

: : :

ncendef(ncid); /* leave define mode */

FORTRAN Interface: NCAPT, NCAPTC

SUBROUTINE NCAPT (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, INTEGER ATTYPE,

+ INTEGER ATTLEN, type VALUE,

+ INTEGER RCODE)

SUBROUTINE NCAPTC (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, INTEGER ATTYPE,

+ INTEGER LENSTR, CHARACTER*(*) STRING,

+ INTEGER RCODE)

There are two FORTRAN subroutines, NCAPT and NCAPTC, for creating attributes. The �rst is

for attributes of numeric type, and the second is for attributes of character-string type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID.

ATTNAM Attribute name. Must begin with an alphabetic character, followed by zero or more

alphanumeric characters including the underscore (`_'). Case is signi�cant. Attribute

name conventions are assumed by some netCDF generic applications, e.g., units as

the name for a string attribute that gives the units for a netCDF variable. A table

of conventional attribute names is presented in the earlier chapter on the netCDF

interface.

ATTYPE One of the set of prede�ned netCDF data types. The valid netCDF data types are

NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE. For NCAPTC, this should

always be NCCHAR (a blemish in the interface, but required for backward compatibility).

ATTLEN In NCAPT, the number of numeric values provided for the attribute.

Chapter 8: Attributes 107

VALUE In NCAPT, an array of ATTLEN data values. The data should be of the appropriate type

for the netCDF attribute. Warning: neither the compiler nor the netCDF software

can detect if the wrong type of data is used.

STRING In NCAPTC, the character-string value of the attribute.

LENSTR In NCAPTC, the total declared length (in characters) of the STRING parameter. Note that

this is not necessarily the same as the value returned by the FORTRAN LEN function,

because an array argument may be provided.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAPT to add a variable attribute named valid_range for a netCDF

variable named rh and a global attribute named title to an existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

DOUBLE RHRNGE(2)

DATA RHRNGE /0.0D0, 100.0D0/

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

CALL NCREDF (NCID, RCODE) ! enter define mode

RHID = NCVID (NCID, 'rh', RCODE)! get ID

: : :

CALL NCAPT (NCID, RHID, 'valid_range', NCDOUBLE, 2,

+ RHRNGE, RCODE)

CALL NCAPTC (NCID, NCGLOBAL, 'title', NCCHAR, 19,

+ 'example netCDF file', RCODE)

: : :

CALL NCENDF (NCID, RCODE) ! leave define mode

8.3 Get Information about an Attribute: ncattinq and NCAINQ

The function ncattinq (or NCAINQ for FORTRAN) returns information about a netCDF at-

tribute, given its variable ID and name. The information returned is the type and length of the

attribute.

In case of an error, ncattinq returns -1; NCAINQ returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed attribute does not exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

108 NetCDF 2.4 User's Guide

C Interface: ncattinq

int ncattinq(int ncid, int varid, const char* name,

nc_type* datatype, int* len);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID of the attribute's variable, or NC_GLOBAL for a global attribute.

name Attribute name.

datatype Returned attribute type, one of the set of prede�ned netCDF data types. The type

of this parameter, nc_type, is de�ned in the netCDF header �le. The valid netCDF

data types are NC_BYTE, NC_CHAR, NC_SHORT, NC_LONG, NC_FLOAT, and NC_DOUBLE. If

this parameter is given as `0' (a null pointer), no type will be returned so no variable

to hold the type needs to be declared.

len Returned number of values currently stored in the attribute. If the attribute is of type

NC_CHAR, this is one more than the string length (since the terminating zero byte is

stored). If this parameter is given as `0' (a null pointer), no length will be returned so

no variable to hold this information needs to be declared.

Here is an example using ncattinq to �nd out the type and length of a variable attribute named

valid_range for a netCDF variable named rh and a global attribute named title in an existing

netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

nc_type vr_type, t_type; /* attribute types */

int vr_len, t_len; /* attribute lengths *'

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

ncattinq (ncid, rh_id, "valid_range", &vr_type, &vr_len);

ncattinq (ncid, NC_GLOBAL, "title", &t_type, &t_len);

: : :

FORTRAN Interface: NCAINQ

SUBROUTINE NCAINQ (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, INTEGER ATTYPE,

+ INTEGER ATTLEN,INTEGER RCODE)

Chapter 8: Attributes 109

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID of the attribute's variable, or NCGLOBAL for a global attribute.

ATTNAM Attribute name.

ATTYPE Returned attribute type, one of the set of prede�ned netCDF data types. The valid

netCDF data types are NCBYTE, NCCHAR, NCSHORT, NCLONG, NCFLOAT, and NCDOUBLE.

ATTLEN Returned number of values currently stored in the attribute. For a string-valued at-

tribute, this is the number of characters in the string.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAINQ to add a variable attribute named valid_range for a netCDF

variable named rh and a global attribute named title to an existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER VRTYPE, TTYPE ! attribute types

INTEGER VRLEN, TLEN ! attribute lengths

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)! get ID

: : :

CALL NCAINQ (NCID, RHID, 'valid_range', VRTYPE, VRLEN,

+ RCODE)

CALL NCAINQ (NCID, NCGLOBAL, 'title', TTYPE, TLEN,

+ RCODE)

8.4 Get Attribute's Values: ncattget and NCAGT(C)

The function ncattget (or NCAGT or NCAGTC for FORTRAN) gets the value(s) of a netCDF

attribute, given its variable ID and name.

In case of an error, ncattget returns -1; NCAGT returns a nonzero value in rcode. Possible

causes of errors include:

� The variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed attribute does not exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncattget

int ncattget(int ncid, int varid, const char* name, void* value);

110 NetCDF 2.4 User's Guide

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid Variable ID of the attribute's variable, or NC_GLOBAL for a global attribute.

name Attribute name.

value Returned attribute values. All elements of the vector of attribute values are returned,

so you must allocate enough space to hold them. If you don't know how much space

to reserve, call ncattinq �rst to �nd out the length of the attribute.

Here is an example using ncattget to determine the values of a variable attribute named valid_

range for a netCDF variable named rh and a global attribute named title in an existing netCDF

�le named `foo.nc'. In this example, it is assumed that we don't know how many values will be

returned, but that we do know the types of the attributes. Hence, to allocate enough space to store

them, we must �rst inquire about the length of the attributes.

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

nc_type vr_type, t_type; /* attribute types */

int vr_len, t_len; /* attribute lengths */

double *vr_val; /* ptr to attribute values */

char *title; /* ptr to attribute values */

extern char *malloc(); /* memory allocator */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* find out how much space is needed for attribute values */

ncattinq (ncid, rh_id, "valid_range", &vr_type, &vr_len);

ncattinq (ncid, NC_GLOBAL, "title", &t_type, &t_len);

/* allocate required space before retrieving values */

vr_val = (double *) malloc(vr_len * nctypelen(vr_type));

title = (char *) malloc(t_len * nctypelen(t_type));

/* get attribute values */

ncattget(ncid, rh_id, "valid_range", vr_val);

ncattget(ncid, NC_GLOBAL, "title", title);

: : :

FORTRAN Interface: NCAGT, NCAGTC

SUBROUTINE NCAGT (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, type VALUES,

+ INTEGER RCODE)

Chapter 8: Attributes 111

SUBROUTINE NCAGTC (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, CHARACTER*(*) STRING,

+ INTEGER LENSTR, INTEGER RCODE)

There are two FORTRAN subroutines, NCAGT and NCAGTC, for retrieving attribute values. The

�rst is for attributes of numeric type, and the second is for attributes of character-string type.

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID Variable ID of the attribute's variable, or NCGLOBAL for a global attribute.

ATTNAM Attribute name.

VALUES Returned attribute values. All elements of the vector of attribute values are returned,

so you must provide enough space to hold them. If you don't know how much space to

reserve, call NCAINQ �rst to �nd out the length of the attribute. Warning: neither the

compiler nor the netCDF software can detect if the wrong type of data is used.

STRING In NCAGTC, the character-string value of the attribute.

LENSTR In NCAGTC, the total declared length (in characters) of the STRING parameter in the

caller. Note that this is not necessarily the same as the value returned by the FOR-

TRAN LEN function, because an array argument may be provided. NCAGTC will check

to make sure the requested data will �t in LENSTR characters.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAGT to determine the values of an attribute named valid_range for

a netCDF variable named rh and a global attribute named title in an existing netCDF �le named

`foo.nc'. In this example, it is assumed that we don't know how many values will be returned,

so we �rst inquire about the length of the attributes to make sure we have enough space to store

them:
INCLUDE 'netcdf.inc'

: : :

PARAMETER (MVRLEN=3) ! max number of "valid_range" values

PARAMETER (MTLEN=80) ! max length of "title" attribute

INTEGER NCID, RCODE

INTEGER RHID ! variable ID

INTEGER VRTYPE, TTYPE ! attribute types

INTEGER VRLEN, TLEN ! attribute lengths

DOUBLE PRECISION VRVAL(MVRLEN) ! vr attribute values

CHARACTER*80 TITLE ! title attribute values

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE) ! get ID

: : :

* find out attribute lengths, to make sure we have enough space

112 NetCDF 2.4 User's Guide

CALL NCAINQ (NCID, RHID, 'valid_range', VRTYPE, VRLEN,

+ RCODE)

CALL NCAINQ (NCID, NCGLOBAL, 'title', TTYPE, TLEN,

+ RCODE)

* get attribute values, if not too big

IF (VRLEN .GT. MVRLEN) THEN

WRITE (*,*) 'valid_range attribute too big!'

CALL EXIT

ELSE

CALL NCAGT (NCID, RHID, 'valid_range', VRVAL, RCODE)

ENDIF

IF (TLEN .GT. MTLEN) THEN

WRITE (*,*) 'title attribute too big!'

CALL EXIT

ELSE

CALL NCAGTC (NCID, NCGLOBAL, 'title', TITLE, MTLEN, RCODE)

ENDIF

8.5 Copy Attribute from One NetCDF to Another: ncattcopy and
NCACPY

The function ncattcopy (or NCACPY for FORTRAN) copies an attribute from one open netCDF

�le to another. It can also be used to copy an attribute from one variable to another within the

same netCDF.

In case of an error, ncattcopy returns -1; NCACPY returns a nonzero value in rcode. Possible

causes of errors include:

� The input or output variable ID is invalid for the speci�ed netCDF �le.

� The speci�ed attribute does not exist.

� The output netCDF is not in de�ne mode and the attribute is new for the output �le is larger

than the existing attribute.

� The input or output netCDF ID does not refer to an open netCDF �le.

C Interface: ncattcopy

int ncattcopy(int incdf, int invar, const char* name, int outcdf, int outvar);

incdf The netCDF ID of an input netCDF �le from which the attribute will be copied,

returned from a previous call to ncopen or nccreate.

invar ID of the variable in the input netCDF �le from which the attribute will be copied, or

NC_GLOBAL for a global attribute.

name Name of the attribute in the input netCDF �le to be copied.

outcdf The netCDF ID of the output netCDF �le to which the attribute will be copied,

returned from a previous call to ncopen or nccreate. It is permissible for the input

Chapter 8: Attributes 113

and output netCDF IDs to be the same. The output netCDF �le should be in de�ne

mode if the attribute to be copied does not already exist for the target variable, or if

it would cause an existing target attribute to grow.

outvar ID of the variable in the output netCDF �le to which the attribute will be copied, or

NC_GLOBAL to copy to a global attribute.

Here is an example using ncattcopy to copy the variable attribute units from the variable rh

in an existing netCDF �le named `foo.nc' to the variable avgrh in another existing netCDF �le

named `bar.nc', assuming that the variable avgrh already exists, but does not yet have a units

attribute:

#include <netcdf.h>

: : :

int ncid1, ncid2; /* netCDF IDs */

int rh_id, avgrh_id; /* variable IDs */

: : :

ncid1 = ncopen("foo.nc", NC_NOWRITE);

ncid2 = ncopen("bar.nc", NC_WRITE);

: : :

rh_id = ncvarid (ncid1, "rh");

avgrh_id = ncvarid (ncid2, "avgrh");

: : :

ncredef(ncid2); /* enter define mode */

/* copy variable attribute from "rh" to "avgrh" */

ncattcopy(ncid1, rh_id, "units", ncid2, avgrh_id);

: : :

ncendef(ncid2); /* leave define mode */

FORTRAN Interface: NCACPY

SUBROUTINE NCACPY (INTEGER INCDF, INTEGER INVAR,

+ CHARACTER*(*) ATTNAM, INTEGER OUTCDF,

+ INTEGER OUTVAR, INTEGER RCODE)

INCDF The netCDF ID of an input netCDF �le from which the attribute will be copied,

returned from a previous call to NCOPN or NCCRE.

INVAR ID of the variable in the input netCDF �le from which the attribute will be copied, or

NCGLOBAL for a global attribute.

ATTNAM Name of the attribute in the input netCDF �le to be copied.

OUTCDF The netCDF ID of the output netCDF �le to which the attribute will be copied,

returned from a previous call to NCOPN or NCCRE. It is permissible for the input and

output netCDF IDs to be the same. The output netCDF �le should be in de�ne mode

if the attribute to be copied does not already exist for the target variable, or if it would

cause an existing target attribute to grow.

114 NetCDF 2.4 User's Guide

OUTVAR ID of the variable in the output netCDF �le to which the attribute will be copied, or

NCGLOBAL to copy to a global attribute.

Here is an example using NCACPY to copy the variable attribute units from the variable rh in an

existing netCDF �le named `foo.nc' to the variable avgrh in another existing netCDF �le named

`bar.nc', assuming that the variable avgrh already exists, but does not yet have a units attribute:

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID1, NCID2 ! netCDF IDs

INTEGER RHID, AVRHID ! variable IDs

: : :

NCID1 = NCOPN ('foo.nc', NCNOWRIT, RCODE)

NCID2 = NCOPN ('bar.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID1, 'rh', RCODE)

AVRHID = NCVID (NCID2, 'avgrh', RCODE)

: : :

CALL NCREDF (NCID2, RCODE) ! enter define mode

* copy variable attribute from "rh" to "avgrh"

CALL NCACPY (NCID1, RHID, 'units', NCID2, AVRHID, RCODE)

: : :

CALL NCENDF (NCID2, RCODE) ! leave define mode

8.6 Get Name of Attribute from Its Number: ncattname and
NCANAM

The function ncattname (or NCANAM for FORTRAN) gets the name of an attribute, given its

variable ID and number. This function is useful in generic applications that need to get the names

of all the attributes associated with a variable, since attributes are accessed by name rather than

number in all other attribute functions. The number of an attribute is more volatile than the name,

since it can change when other attributes of the same variable are deleted. This is why an attribute

number is not called an attribute ID.

In case of an error, ncattname returns -1; NCANAM returns a nonzero value in rcode. Possible

causes of errors include:

� The speci�ed variable ID is not valid.

� The speci�ed attribute number is negative or more than the number of attributes de�ned for

the speci�ed variable.

� The speci�ed attribute does not exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

Chapter 8: Attributes 115

C Interface: ncattname

int ncattname (int ncid, int varid, int attnum, char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid ID of the attribute's variable, or NC_GLOBAL for a global attribute.

attnum Number of the attribute. The attributes for each variable are numbered from 0 (the

�rst attribute) to nvatts-1, where nvatts is the number of attributes for the variable,

as returned from a call to ncvarinq.

name Returned attribute name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of an attribute name is given by the prede�ned

constant MAX_NC_NAME. If the name parameter is given as 0 (a null pointer), no name

will be returned and no space needs to be allocated.

Here is an example using ncattname to determine the name of the �rst attribute of the variable

rh in an existing netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

char attname[MAX_NC_NAME]; /* maximum-size attribute name */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* get name of first attribute (number 0) */

ncattname(ncid, rh_id, 0, attname);

FORTRAN Interface: NCANAM

SUBROUTINE NCANAM (INTEGER NCID, INTEGER VARID,

+ INTEGER ATTNUM, CHARACTER*(*) ATTNAM,

+ INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID ID of the attribute's variable, or NCGLOBAL for a global attribute.

ATTNUM Number of the attribute. The attributes for each variable are numbered from 1 (the

�rst attribute) to NVATTS, where NVATTS is the number of attributes for the variable,

as returned from a call to NCVINQ.

116 NetCDF 2.4 User's Guide

ATTNAM Returned attribute name. The caller must allocate space for the returned name. The

maximum possible length, in characters, of an attribute name is given by the prede�ned

constant MAXNCNAM.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCANAM determine the name of the �rst attribute of the variable rh in

an existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID ! netCDF ID

INTEGER RHID ! variable ID

* 31 in the following should be MAXNCNAM

CHARACTER*31 ATTNAM

: : :

NCID = NCOPN ('foo.nc', NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)

: : :

* get name of first attribute (number 1)

CALL NCANAM (NCID, RHID, 1, ATTNAM, RCODE)

8.7 Rename an Attribute: ncattrename and NCAREN

The function ncattrename (or NCAREN for FORTRAN) changes the name of an attribute. If the

new name is longer than the original name, the netCDF �le must be in de�ne mode. You cannot

rename an attribute to have the same name as another attribute of the same variable.

In case of an error, ncattrename returns -1; NCAREN returns a nonzero value in rcode. Possible

causes of errors include:

� The speci�ed variable ID is not valid.

� The new attribute name is already in use for another attribute of the speci�ed variable.

� The speci�ed netCDF �le is in data mode and the new name is longer than the old name.

� The speci�ed attribute does not exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncattrename

int ncattrename (int ncid, int varid, const char* name, const char* newname);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate

varid ID of the attribute's variable, or NC_GLOBAL for a global attribute

name The original attribute name.

Chapter 8: Attributes 117

newname The new name to be assigned to the speci�ed attribute. If the new name is longer than

the old name, the netCDF �le must be in de�ne mode.

Here is an example using ncattrename to rename the variable attribute units to Units for a

variable rh in an existing netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable id */

: : :

ncid = ncopen("foo.nc", NC_NOWRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* rename attribute */

ncattrename(ncid, rh_id, "units", "Units");

FORTRAN Interface: NCAREN

SUBROUTINE NCAREN (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM,

+ CHARACTER*(*) NEWNAM, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE

VARID ID of the attribute's variable, or NCGLOBAL for a global attribute

ATTNAM The original attribute name.

NEWNAM The new name to be assigned to the speci�ed attribute. If the new name is longer than

the old name, the netCDF �le must be in de�ne mode.

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCAREN to rename the variable attribute units to Units for a variable

rh in an existing netCDF �le named `foo.nc':

INCLUDE "netcdf.inc"

: : :

INTEGER NCID ! netCDF ID

INTEGER RHID ! variable ID

: : :

NCID = NCOPN ("foo.nc", NCNOWRIT, RCODE)

: : :

RHID = NCVID (NCID, "rh", RCODE)

: : :

* rename attribute

CALL NCAREN (NCID, RHID, "units", "Units", RCODE)

118 NetCDF 2.4 User's Guide

8.8 Delete an Attribute: ncattdel and NCADEL

The function ncattdel (or NCADEL for FORTRAN) deletes a netCDF attribute from an open

netCDF �le. The netCDF �le must be in de�ne mode.

In case of an error, ncattdel returns -1; NCADEL returns a nonzero value in rcode. Possible

causes of errors include:

� The speci�ed variable ID is not valid.

� The speci�ed netCDF �le is in data mode.

� The speci�ed attribute does not exist.

� The speci�ed netCDF ID does not refer to an open netCDF �le.

C Interface: ncattdel

int ncattdel (int ncid, int varid, const char* name);

ncid NetCDF ID, returned from a previous call to ncopen or nccreate.

varid ID of the attribute's variable, or NC_GLOBAL for a global attribute.

name The name of the attribute to be deleted.

Here is an example using ncattdel to delete the variable attribute Units for a variable rh in

an existing netCDF �le named `foo.nc':

#include <netcdf.h>

: : :

int ncid; /* netCDF ID */

int rh_id; /* variable ID */

: : :

ncid = ncopen("foo.nc", NC_WRITE);

: : :

rh_id = ncvarid (ncid, "rh");

: : :

/* delete attribute */

ncredef(ncid); /* enter define mode */

ncattdel(ncid, rh_id, "Units");

ncendef(ncid); /* leave define mode */

FORTRAN Interface: NCADEL

SUBROUTINE NCADEL (INTEGER NCID, INTEGER VARID,

+ CHARACTER*(*) ATTNAM, INTEGER RCODE)

NCID NetCDF ID, returned from a previous call to NCOPN or NCCRE.

VARID ID of the attribute's variable, or NCGLOBAL for a global attribute.

ATTNAM The original attribute name.

Chapter 8: Attributes 119

RCODE Returned error code. If no errors occurred, 0 is returned.

Here is an example using NCADEL to delete the variable attribute Units for a variable rh in an

existing netCDF �le named `foo.nc':

INCLUDE 'netcdf.inc'

: : :

INTEGER NCID ! netCDF ID

INTEGER RHID ! variable ID

: : :

NCID = NCOPN ('foo.nc', NCWRITE, RCODE)

: : :

RHID = NCVID (NCID, 'rh', RCODE)

: : :

* delete attribute

CALL NCREDF (NCID, RCODE) ! enter define mode

CALL NCADEL (NCID, RHID, 'Units', RCODE)

CALL NCENDF (NCID, RCODE) ! leave define mode

120 NetCDF 2.4 User's Guide

Chapter 9: NetCDF File Structure and Performance 121

9 NetCDFFile Structure and Performance

NetCDF is a data abstraction for array-oriented data access and a software library that provides

a concrete implementation of the interfaces that support that abstraction. The implementation

provides a machine-independent format for representing arrays. Although the netCDF �le format is

hidden below the interfaces, some understanding of the implementation and associated �le structure

may help to make clear which netCDF operations are expensive and why.

For a detailed description of the netCDF format, see Appendix B [File Format Speci�cation],

page 143. It is not needed to read and write netCDF �les or understand e�ciency issues. Programs

that use only the documented interfaces and that make no other assumptions about the format will

continue to work even if the netCDF format is changed in the future, because any such change will

be made below the documented interfaces and will support earlier versions of netCDF data.

This chapter describes the structure of a netCDF �le and some characteristics of the XDR layer

that provides network transparency in enough detail to understand netCDF performance issues.

9.1 Parts of a NetCDF File

A netCDF dataset is stored as a single �le comprising two parts:

� a header, containing all the information about dimensions, attributes, and variables except for

the variable data;

� a data part, comprising �xed-size data, containing the data for variables that don't have an

unlimited dimension; and record data, containing the data records for variables that have an

unlimited dimension.

All the data are represented in XDR form to make them machine-independent.

The descriptive header at the beginning of the netCDF �le is an XDR encoding of a high-level

data structure that represents information about the dimensions, variables, and attributes in the

�le. The variable descriptions in this header contain o�sets to the beginning of each variable's data

or the relative o�set of a variable within a record. The descriptions also contain the dimension size

and information needed to determine how to map multidimensional indices for each variable to the

appropriate o�sets.

This header has no usable extra space; it is only as large as it needs to be for the dimensions,

variables, and attributes in each netCDF �le. This has the advantage that netCDF �les are compact,

requiring very little overhead to store the ancillary data that makes the �les self-describing. A

potential disadvantage of this organization is that any operation on a netCDF �le that requires

expanding the header, for example adding new dimensions and new variables to an existing netCDF

�le, will be as expensive as copying the �le. This expense is incurred when ncendef() is called,

after a call to ncredef(). If you create all necessary dimensions, variables, and attributes before

122 NetCDF 2.4 User's Guide

writing variable data, and avoid later additions and renamings of netCDF components that require

more space in the header part of the �le, you avoid the cost associated with expanding the header.

The �xed-size data part that follows the header contains all the variable data for variables that

do not employ the unlimited (record) dimension. The data for each variable is stored contiguously

in this part of the �le. If there is no unlimited dimension, this is the last part of the netCDF �le.

The record-data part that follows the �xed-size data consists of a variable number of records,

each of which contains data for all the record variables. The record data for each variable is stored

contiguously in each record.

The order in which the data in the �xed-size data part and in each record appears is the same

as the order in which the variables were de�ned, in increasing numerical order by netCDF variable

ID. This knowledge can sometimes be used to enhance data access performance, since the best data

access is currently achieved by reading or writing the data in sequential order.

9.2 The XDR Layer

XDR is a standard for describing and encoding data and a library of functions for external data

representation, allowing programmers to encode data structures in a machine-independent way.

NetCDF employs XDR for representing all data, in both the header part and the data parts. XDR

is used to write portable data that can be read on any other machine for which the XDR library

has been implemented.

9.3 General XDR Considerations

Many vendors provide an XDR library along with other C run-time libraries. The netCDF

software distribution also includes Sun's portable implementation of XDR for platforms that don't

already have a vendor-supplied XDR library.

An I/O layer implemented much like the C standard I/O (stdio) library is used by the XDR layer

to read and write XDR-encoded data to netCDF �les. Hence an understanding of the standard I/O

library provides answers to most questions about multiple processes accessing data concurrently,

the use of I/O bu�ers, and the costs of opening and closing netCDF �les. In particular, it is

possible to have one process writing a netCDF �le while other processes read it. Data reads and

writes are no more atomic than calls to stdio fread() and fwrite(). An ncsync() call (NCSNC()

for FORTRAN) is analogous to the fflush() call in the standard I/O library, writing unwritten

bu�ered data so other processes can read it; ncsync() also brings header changes up-to-date (e.g.,

changes to attribute values).

As in the stdio library,
ushes are also performed when \seeks" occur to a di�erent area of

the �le. Hence the order of read and write operations can in
uence I/O performance signi�cantly.

Reading data in the same order in which it was written within each record will minimize bu�er

ushes.

Chapter 9: NetCDF File Structure and Performance 123

There is one unusual case where the situation is more complex: when a writer enters de�ne

mode to add some additional dimensions, variables, or attributes to an existing netCDF �le that

is also open for reading by other processes. In this case, when the writer leaves de�ne mode, a new

copy of the �le is created with the new dimensions, attributes, or variables and the old data, but

readers that still have the �le open will not see the changes, unless they close and reopen the �le.

You should not expect netCDF data access to work with multiple writers having the same �le

open for writing simultaneously.

It is possible to tune an implementation of netCDF for some platforms by replacing the I/O

layer beneath XDR with a di�erent platform-speci�c I/O layer. This has been done for Crays,

for example. This may change the similarities between netCDF and standard I/O, and hence

characteristics related to data sharing, bu�ering, and the cost of I/O operations.

The cost of using a canonical representation for data like XDR varies according to the type of

data and whether the XDR form is the same as the machine's native form for that type. XDR is

especially e�cient for byte, character, and short integer data.

For some data types on some machines, the time required to convert data to and from XDR

form can be signi�cant. The best case is byte arrays, for which very little conversion expense

occurs, since the XDR library has built-in support for them. The netCDF implementation includes

similar support added to XDR for arrays of short (16-bit) integers. The worst case is reading or

writing large arrays of
oating-point data on a machine that does not use IEEE
oating-point as its

native representation. The XDR library incurs the expense of a function call for each
oating-point

quantity accessed. On some architectures the cost of a function invocation for each
oating-point

number can dominate the cost of netCDF access to
oating-point �elds.

The distributed netCDF implementation is meant to be portable. Platform-speci�c ports that

further optimize the implementation for better I/O performance or that unroll the loops in the

XDR library to optimize XDR conversion of long integer and
oating-point arrays are practical

and desirable in cases where higher performance for data access is necessary.

9.4 UNICOSOptimization

As was mentioned in the previous section, it is possible to replace the I/O layer that is used by

XDR in order to increase I/O e�ciency. This has been done for UNICOS, the operating system of

Cray computers (e.g. the Cray Y-MP).

Additionally, it is possible for the user to obtain even greater I/O e�ciency through appropriate

setting of the NETCDF_FFIOSPEC environment variable. This variable speci�es the Flexible File

I/O bu�ers for netCDF I/O when executing under the UNICOS operating system (the variable is

ignored on other operating systems). An appropriate speci�cation can greatly increase the e�ciency

of netCDF I/O | to the extent that it can rival and actually surpass default FORTRAN binary

I/O. Possible speci�cations include the following:

124 NetCDF 2.4 User's Guide

� bufa:336:2 2, asynchronous, I/O bu�ers of 336 blocks each (i.e. double bu�ering). This is

the default speci�cation and favors sequential I/O.

� cache:256:8:2 8, synchronous, 256-block pages with a 2 block read-ahead/write-behind factor.

This favors larger random accesses.

� cachea:256:8:2 8, asynchronous, 256-block pages with a 2 block read-ahead/write-behind

factor. This also favors larger random accesses.

� cachea:8:256:0 256, asynchronous, 8-block pages without read-ahead/write-behind. This

favors many smaller pages without read-ahead for more random accesses as typi�ed by slicing

netCDF arrays.

� cache:8:256:0,cachea.sds:1024:4:1This is a two layer cache. The �rst (synchronous) layer

is composed of 256 8-block pages in memory, the second (asynchronous) layer is composed of 4

1024-block pages on the SSD. This scheme works well when accesses proceed through the �le

in random waves roughly 2x1024-blocks wide.

All of the options/con�gurations supported in CRI's FFIO library are available through this

mechanism. We recommend that you look at CRI's I/O optimization guide for information on

using FFIO to it's fullest. This mechanism is also compatible with CRI's EIE I/O library.

Tuning the NETCDF_FFIOSPEC variable to a program's I/O pattern can dramatically improve

performance. Speedups of two orders of magnitude have been seen.

Chapter 10: NetCDF Utilities 125

10 NetCDFUtilities

One of the primary reasons for using the netCDF interface for applications that deal with

arrays is to take advantage of higher-level netCDF utilities and generic applications for netCDF

data. Currently two netCDF utilities are available as part of the netCDF software distribution:

ncgen and ncdump. Users have contributed other netCDF utilities, and various visualization and

analysis packages are available that access netCDF data. For an up-to-date list of freely-available

and commercial software that can access or manipulate netCDF data, see the NetCDF Software

list (`http://www.unidata.ucar.edu/packages/netcdf/software.html').

This chapter describes the ncgen and ncdump utilities. These two tools convert between binary

netCDF �les and a text representation of netCDF �les. The output of ncdump and the input to

ncgen is a text description of a netCDF �le in a tiny language known as CDL (network Common

data form Description Language).

10.1 CDL Syntax

Below is an example of CDL, describing a netCDF �le with several named dimensions (lat,

lon, time), variables (z, t, p, rh, lat, lon, time), variable attributes (units, _FillValue, valid_

range), and some data.

netcdf foo { // example netCDF specification in CDL

dimensions:

lat = 10, lon = 5, time = unlimited ;

variables:

long lat(lat), lon(lon), time(time);

float z(time,lat,lon), t(time,lat,lon);

double p(time,lat,lon);

long rh(time,lat,lon);

lat:units = "degrees_north";

lon:units = "degrees_east";

time:units = "seconds";

z:units = "meters";

z:valid_range = 0., 5000.;

p:_FillValue = -9999.;

rh:_FillValue = -1;

data:

lat = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90;

lon = -140, -118, -96, -84, -52;

}

All CDL statements are terminated by a semicolon. Spaces, tabs, and newlines can be used

freely for readability. Comments may follow the double slash characters // on any line.

126 NetCDF 2.4 User's Guide

A CDL description consists of three optional parts: dimensions, variables, and data. The

variable part may contain variable declarations and attribute assignments.

A dimension is used to de�ne the shape of one or more of the multidimensional variables de-

scribed by the CDL description. A dimension has a name and a size. At most one dimension in

a CDL description can have the unlimited size, which means a variable using this dimension can

grow to any length (like a record number in a �le).

A variable represents a multidimensional array of values of the same type. A variable has a

name, a data type, and a shape described by its list of dimensions. Each variable may also have

associated attributes (see below) as well as data values. The name, data type, and shape of a

variable are speci�ed by its declaration in the variable section of a CDL description. A variable

may have the same name as a dimension; by convention such a variable contains coordinates of the

dimension it names.

An attribute contains information about a variable or about the whole netCDF dataset. At-

tributes may be used to specify such properties as units, special values, maximum and minimum

valid values, and packing parameters. Attribute information is represented by single values or ar-

rays of values. For example, units is an attribute represented by a character array such as celsius.

An attribute has an associated variable, a name, a data type, a length, and a value. In contrast to

variables that are intended for data, attributes are intended for ancillary data (data about data).

In CDL, an attribute is designated by a variable and attribute name, separated by a colon (`:').

It is possible to assign global attributes to the netCDF �le as a whole by omitting the variable

name and beginning the attribute name with a colon (`:'). The data type of an attribute in CDL

is derived from the type of the value assigned to it. The length of an attribute is the number of

data values or the number of characters in the character string assigned to it. Multiple values

are assigned to non-character attributes by separating the values with commas (`,'). All values

assigned to an attribute must be of the same type.

CDL names for variables, attributes, and dimensions may be any combination of alphabetic or

numeric characters as well as `_' and `-' characters, but names beginning with `_' are reserved for

use by the library. Case is signi�cant in CDL names. The netCDF library does not enforce any

restrictions on netCDF names, so it is possible (though unwise) to de�ne variables with names that

are not valid CDL names. The names for the primitive data types are reserved words in CDL, so

the names of variables, dimensions, and attributes must not be type names.

The optional data section of a CDL description is where netCDF variables may be initialized.

The syntax of an initialization is simple:

variable = value 1, value 2, : : :;

The comma-delimited list of constants may be separated by spaces, tabs, and newlines. For

multidimensional arrays, the last dimension varies fastest. Thus, row-order rather than column

order is used for matrices. If fewer values are supplied than are needed to �ll a variable, it is

Chapter 10: NetCDF Utilities 127

extended with the �ll value. The types of constants need not match the type declared for a

variable; coercions are done to convert integers to
oating point, for example. All meaningful type

conversions are supported.

A special notation for �ll values is supported: the `_' character designates a �ll value for variables.

10.2 CDL Data Types

The CDL data types are:

char Characters.

byte Eight-bit integers.

short 16-bit signed integers.

long 32-bit signed integers.

int (Synonymous with long).

float IEEE single-precision
oating point (32 bits).

real (Synonymous with
oat).

double IEEE double-precision
oating point (64 bits).

Except for the added data-type byte and the lack of the type quali�er unsigned, CDL supports

the same primitive data types as C. In declarations, type names may be speci�ed in either upper

or lower case.

The byte type di�ers from the char type in that it is intended for eight-bit data, and the

zero byte has no special signi�cance, as it may for character data. The ncgen utility converts

byte declarations to char declarations in the output C code and to BYTE, INTEGER*1, or similar

platform-speci�c declaration in output FORTRAN code.

The short type holds values between -32768 and 32767. The ncgen utility converts short

declarations to short declarations in the output C code and to INTEGER*2 declaration in output

FORTRAN code.

The long type can hold values between -2147483648 and 2147483647. The ncgen utility converts

long declarations to nclong declarations in the output C code and to INTEGER declarations in

output FORTRAN code. In CDL declarations int and integer are accepted as synonyms for

long.

The float type can hold values between about -3.4+38 and 3.4+38, with external representation

as 32-bit IEEE normalized single-precision
oating-point numbers. The ncgen utility converts

float declarations to float declarations in the output C code and to REAL declarations in output

FORTRAN code. In CDL declarations real is accepted as a synonym for float.

128 NetCDF 2.4 User's Guide

The double type can hold values between about -1.7+308 and 1.7+308, with external represen-

tation as 64-bit IEEE standard normalized double-precision,
oating-point numbers. The ncgen

utility converts double declarations to double declarations in the output C code and to DOUBLE

PRECISION declarations in output FORTRAN code.

10.3 CDL Notation for Data Constants

This section describes the CDL notation for constants.

Attributes are initialized in the variables section of a CDL description by providing a list of

constants that determines the attribute's type and length. (In the C and FORTRAN procedural

interfaces to the netCDF library, the type and length of an attribute must be explicitly provided

when it is de�ned.) CDL de�nes a syntax for constant values that permits distinguishing among

di�erent netCDF types. The syntax for CDL constants is similar to C syntax, except that type

su�xes are appended to shorts and floats to distinguish them from longs and doubles.

A byte constant is represented by a single character or multiple character escape sequence

enclosed in single quotes. For example:

'a' // ASCII a

'\0' // a zero byte

'\n' // ASCII newline character

'\33' // ASCII escape character (33 octal)

'\x2b' // ASCII plus (2b hex)

'\376' // 377 octal = -127 (or 254) decimal

Character constants are enclosed in double quotes. A character array may be represented as a

string enclosed in double quotes. Multiple strings are concatenated into a single array of characters,

permitting long character arrays to appear on multiple lines. To support multiple variable-length

string values, a conventional delimiter such as `,' may be used, but interpretation of any such

convention for a string delimiter must be implemented in software above the netCDF library layer.

The usual escape conventions for C strings are honored. For example:

"a" // ASCII `a'

"Two\nlines\n" // a 10-character string with two embedded newlines

"a bell:\007" // a string containing an ASCII bell

"ab","cde" // the same as "abcde"

The form of a short constant is an integer constant with an `s' or `S' appended. If a short

constant begins with `0', it is interpreted as octal. When it begins with `0x', it is interpreted as a

hexadecimal constant. For example:

2s // a short 2

0123s // octal

0x7ffs // hexadecimal

Chapter 10: NetCDF Utilities 129

The form of a long constant is an ordinary integer constant, although it is acceptable to append

an optional `l' or `L'. If a long constant begins with `0', it is interpreted as octal. When it begins

with `0x', it is interpreted as a hexadecimal constant. Examples of valid long constants include:

-2

1234567890L

0123 // octal

0x7ff // hexadecimal

The float type is appropriate for representing data with about seven signi�cant digits of pre-

cision. The form of a float constant is the same as a C
oating-point constant with an `f' or

`F' appended. A decimal point is required in a CDL float to distinguish it from an integer. For

example, the following are all acceptable float constants:

-2.0f

3.14159265358979f // will be truncated to less precision

1.f

.1f

The double type is appropriate for representing
oating-point data with about 16 signi�cant

digits of precision. The form of a double constant is the same as a C
oating-point constant. An

optional `d' or `D' may be appended. A decimal point is required in a CDL double to distinguish

it from an integer. For example, the following are all acceptable double constants:

-2.0

3.141592653589793

1.0e-20

1.d

10.4 ncgen

The ncgen tool generates a netCDF �le or a C or FORTRAN program that creates a netCDF

�le. If no options are speci�ed in invoking ncgen, the program merely checks the syntax of the

CDL input, producing error messages for any violations of CDL syntax.

UNIX syntax for invoking ncgen:

ncgen [-b] [-o netcdf-�le] [-c] [-f] [-n] [input-�le]

where:

`-b' Create a (binary) netCDF �le. If the `-o' option is absent, a default �le name will be

constructed from the netCDF name (speci�ed after the netcdf keyword in the input)

by appending the `.nc' extension. Warning: if a �le already exists with the speci�ed

name it will be overwritten.

130 NetCDF 2.4 User's Guide

`-o netcdf-file'

Name for the netCDF �le created. If this option is speci�ed, it implies the `-b' option.

(This option is necessary because netCDF �les are direct-access �les created with seek

calls, and hence cannot be written to standard output.)

`-c' Generate C source code that will create a netCDF �le matching the netCDF speci�ca-

tion. The C source code is written to standard output. This is only useful for relatively

small CDL �les, since all the data is included in variable initializations in the generated

program.

`-f' Generate FORTRAN source code that will create a netCDF �le matching the netCDF

speci�cation. The FORTRAN source code is written to standard output. This is

only useful for relatively small CDL �les, since all the data is included in variable

initializations in the generated program.

`-n' Like the `-b' option, except creates a netCDF �le with the obsolete `.cdf' extension

instead of the `.nc' extension, in the absence of an output �lename speci�ed by the

`-o' option. This option is only supported for backward compatibility.

Examples

Check the syntax of the CDL �le `foo.cdl':

ncgen foo.cdl

From the CDL �le `foo.cdl', generate an equivalent binary netCDF �le named `bar.nc':

ncgen -o bar.nc foo.cdl

From the CDL �le `foo.cdl', generate a C program containing the netCDF function invocations

necessary to create an equivalent binary netCDF �le:

ncgen -c foo.cdl > foo.c

10.5 ncdump

The ncdump tool generates the CDL text representation of a netCDF �le on standard output,

optionally excluding some or all of the variable data in the output. The output from ncdump is

intended to be acceptable as input to ncgen. Thus ncdump and ncgen can be used as inverses to

transform data representation between binary and text representations.

ncdump may also be used as a simple browser for netCDF data �les, to display the dimension

names and sizes; variable names, types, and shapes; attribute names and values; and optionally,

the values of data for all variables or selected variables in a netCDF �le.

ncdump de�nes a default format used for each type of netCDF variable data, but this can be

overridden if a C_format attribute is de�ned for a netCDF variable. In this case, ncdump will use

the C_format attribute to format values for that variable. For example, if
oating-point data for the

Chapter 10: NetCDF Utilities 131

netCDF variable Z is known to be accurate to only three signi�cant digits, it might be appropriate

to use the variable attribute

ncdump uses `_' to represent data values that are equal to the _FillValue attribute for a variable,

intended to represent data that has not yet been written. If a variable has no _FillValue attribute,

the default �ll value for the variable type is used unless the variable is of byte type.

Z:C_format = "%.3g"

UNIX syntax for invoking ncdump:

ncdump [-c | -h] [-v var1,: : :] [-b lang] [-f lang]
[-l len] [-d fdig[,ddig]] [-n name] [input-�le]

where:

`-c' Show the values of coordinate variables (variables that are also dimensions) as well

as the declarations of all dimensions, variables, and attribute values. Data values of

non-coordinate variables are not included in the output. This is often the most suitable

option to use for a brief look at the structure and contents of a netCDF �le.

`-h' Show only the header information in the output, that is, output only the declarations

for the netCDF dimensions, variables, and attributes of the input �le, but no data

values for any variables. The output is identical to using the `-c' option except that

the values of coordinate variables are not included. (At most one of `-c' or `-h' options

may be present.)

`-v var1,: : :'

The output will include data values for the speci�ed variables, in addition to the dec-

larations of all dimensions, variables, and attributes. One or more variables must be

speci�ed by name in the comma-delimited list following this option. The list must be

a single argument to the command, hence cannot contain blanks or other white space

characters. The named variables must be valid netCDF variables in the input-�le. The

default, without this option and in the absence of the `-c' or `-h' options, is to include

data values for all variables in the output.

`-b lang' A brief annotation in the form of a CDL comment (text beginning with the characters

`//') will be included in the data section of the output for each `row' of data, to

help identify data values for multidimensional variables. If lang begins with `C' or `c',

then C language conventions will be used (zero-based indices, last dimension varying

fastest). If lang begins with `F' or `f', then FORTRAN language conventions will be

used (one-based indices, �rst dimension varying fastest). In either case, the data will

be presented in the same order; only the annotations will di�er. This option may be

useful for browsing through large volumes of multidimensional data.

`-f lang' Full annotations in the form of trailing CDL comments (text beginning with the char-

acters `//') for every data value (except individual characters in character arrays) will

132 NetCDF 2.4 User's Guide

be included in the data section. If lang begins with `C' or `c', then C language conven-

tions will be used (zero-based indices, last dimension varying fastest). If lang begins

with `F' or `f', then FORTRAN language conventions will be used (one-based indices,

�rst dimension varying fastest). In either case, the data will be presented in the same

order; only the annotations will di�er. This option may be useful for piping data into

other �lters, since each data value appears on a separate line, fully identi�ed.. (At

most one of `-b' or `-f' options may be present.)

`-l len' Changes the default maximum line length (80) used in formatting lists of non-character

data values.

`-d float_digits[,double_digits]'

Speci�es default number of signi�cant digits to use in displaying
oating-point or double

precision data values for variables that don't have a `C format' attribute. Floating-

point data will be displayed with
oat digits signi�cant digits. If double digits is also

speci�ed, double-precision values will be displayed with that many signi�cant digits. If

a variable has a `C format' attribute, that overrides any speci�ed
oating-point default.

In the absence of any `-d' speci�cations,
oating-point and double-precision data are

displayed with 7 and 15 signi�cant digits respectively. CDL �les can be made smaller

if less precision is required. If both
oating-point and double-precision precisions are

speci�ed, the two values must appear separated by a comma (no blanks) as a single

argument to the command.

`-n name' CDL requires a name for a netCDF dataset, for use by `ncgen -b' in generating a

default netCDF �le name. By default, ncdump constructs this name from the last

component of the �le name of the input netCDF �le by stripping o� any extension it

has. Use the `-n' option to specify a di�erent name. Although the output �le name

used by `ncgen -b' can be speci�ed, it may be wise to have ncdump change the default

name to avoid inadvertently overwriting a valuable netCDF �le when using ncdump,

editing the resulting CDL �le, and using `ncgen -b' to generate a new netCDF �le from

the edited CDL �le.

Examples

Look at the structure of the data in the netCDF �le `foo.nc':

ncdump -c foo.nc

Produce an annotated CDL version of the structure and data in the netCDF �le `foo.nc', using

C-style indexing for the annotations:

ncdump -b c foo.nc > foo.cdl

Output data for only the variables uwind and vwind from the netCDF �le `foo.nc', and show

the
oating-point data with only three signi�cant digits of precision:

Chapter 10: NetCDF Utilities 133

ncdump -v uwind,vwind -d 3 foo.nc

Produce a fully-annotated (one data value per line) listing of the data for the variable omega,

using FORTRAN conventions for indices, and changing the netCDF dataset name in the resulting

CDL �le to omega:

ncdump -v omega -f fortran -n omega foo.nc > Z.cdl

134 NetCDF 2.4 User's Guide

Chapter 11: Answers to Some Frequently Asked Questions 135

11 Answers to Some FrequentlyAskedQuestions

This chapter contains answers to some of the most frequently asked questions about netCDF.

A more comprehensive and up-to-date FAQ document for netCDF is maintained at

`http://www.unidata.ucar.edu/packages/netcdf/faq.html'

What Is netCDF?

NetCDF (network Common Data Form) is an interface for array-oriented data access and a

freely-distributed collection of software libraries for C, FORTRAN, C++, and perl that provide

implementations of the interface. The netCDF software was developed by Glenn Davis, Russ

Rew, and Steve Emmerson at the Unidata Program Center in Boulder, Colorado, and augmented

by contributions from other netCDF users. The netCDF libraries de�ne a machine-independent

format for representing arrays. Together, the interface, libraries, and format support the creation,

access, and sharing of arrays.

NetCDF data is:

� Self-Describing. A netCDF �le includes information about the data it contains.

� Network-transparent. A netCDF �le is represented in a form that can be accessed by computers

with di�erent ways of storing integers, characters, and
oating-point numbers.

� Direct-access. A small subset of a large dataset may be accessed e�ciently, without �rst

reading through all the preceding data.

� Appendable. Data can be appended to a netCDF dataset along one dimension without copying

the dataset or rede�ning its structure. The structure of a netCDF dataset can be changed,

though this sometimes causes the dataset to be copied.

� Sharable. One writer and multiple readers may simultaneously access the same netCDF �le.

How do I get the netCDF software package?

Source distributions are available via anonymous FTP from the directory

`ftp.unidata.ucar.edu:pub/netcdf/'

Files in that directory include:

netcdf.tar.Z

A compressed tar �le of source code for the latest general release.

netcdf-beta.tar.Z

The current beta-test release.

Binary distributions for some platforms are available from the directory

136 NetCDF 2.4 User's Guide

`ftp://ftp.unidata.ucar.edu/pub/binary/'

Source for the perl interface is available as a separate package, via anonymous FTP from the

directory

`ftp://ftp.unidata.ucar.edu/pub/netcdf-perl/'

Is there any access to netCDF information on theWorld Wide
Web?

Yes, the latest version of this FAQ document as well as a hypertext version of the NetCDF

User's Guide and other information about netCDF are available from

`http://www.unidata.ucar.edu/packages/netcdf'

What has changed since the previous release?

Version 2.4 incorporates support for new platforms and updated versions of previously-supported

platforms, provides new optimizations for Cray/UNICOS, incorporates �xes for reported bugs,

improves the documentation, and improves ease of installation. For more details, see

`http://www.unidata.ucar.edu/packages/netcdf/release-notes.html'

Is there a mailing list for netCDF discussions and questions?

Yes. For information about the mailing list and how to subscribe or unsubscribe, send a message

to majordomo@unidata.ucar.edu with no subject and with the following line in the body of the

message:

info netcdfgroup

Who else uses netCDF?

The netCDF mailing list has almost 500 addresses (some of which are aliases to more addresses)

in �fteen countries. Several groups have adopted netCDF as a standard way to represent some

forms of array-oriented data, including groups in the atmospheric sciences, hydrology, oceanography,

environmental modeling, geophysics, chromatography, mass spectrometry, and neuro-imaging.

A description of some of the projects and groups that have used netCDF is available from

`http://www.unidata.ucar.edu/packages/netcdf/usage.html'

What is the physical format for a netCDF �les?

See Chapter 9 [NetCDF File Structure and Performance], page 121, for an explanation of the

physical structure of netCDF data at a high enough level to make clear the performance implications

Chapter 11: Answers to Some Frequently Asked Questions 137

of di�erent data organizations. See Appendix B [File Format Speci�cation], page 143, for a detailed

speci�cation of the �le format.

Programs that access netCDF data should perform all access through the documented interfaces,

rather than relying on the physical format of netCDF data. That way, any future changes to the

format will not require changes to programs, since any such changes will be accompanied by changes

in the library to support both the old and new versions of the format.

What does netCDF run on?

The current version of netCDF has been tested successfully on the following platforms:

� AIX-4.1

� HPUX-9.05

� IRIX-5.3

� IRIX64-6.1

� MSDOS (using gcc, f2c, and GNU make)

� OSF1-3.2

� OpenVMS-6.2

� OS/2 2.1

� SUNOS-4.1.4

� SUNOS-5.5

� ULTRIX-4.5

� UNICOS-8

� Windows NT-3.51

What other software is available for netCDF data?

Utilities available in the current netCDF distribution from Unidata are ncdump, for converting

netCDF �les to an ASCII human-readable form, and ncgen for converting from the ASCII human-

readable form back to a binary netCDF �le or a C or FORTRAN program for generating the

netCDF �le.

Several commercial and freely available analysis and data visualization packages have been

adapted to access netCDF data. More information about these packages and other software that

can be used to manipulate or display netCDF data is available from

`http://www.unidata.ucar.edu/packages/netcdf/software.html'

138 NetCDF 2.4 User's Guide

What other formats are available for array-oriented data?

The Scienti�c Data Format Information FAQ, available from

`http://www.cis.ohio-state.edu/hypertext/faq/usenet/sci-data-formats/faq.html' ,

provides a good description of other access interfaces and formats for array-oriented data, including

CDF and HDF.

Why do netCDF calls just exit on errors instead of returning an
error indicator?

The default error handling behavior of all the netCDF functions is to exit on error, but this

behavior is under programmer control. You can independently control the fatality of errors and

the appearance of messages from errors detected in netCDF library calls. See Section 4.5 [Error

Handling], page 32, for more information.

How do I make a bug report?

If you �nd a bug, send a description to support@unidata.ucar.edu. This is also the address to

use for questions or discussions about netCDF that are not appropriate for the entire netcdfgroup

mailing list.

How do I search through past problem reports?

A search form is available at the bottom of the netCDF home page providing a full-text search

of the support questions and answers about netCDF provided by Unidata support sta�.

How does the C++ interface di�er from the C interface?

It provides all the functionality of the C interface (except for the subsampled or mapped array

access of ncvarputg and ncvargetg), improves type safety by eliminating use of void* pointers,

and is somewhat simpler to use than the C interface. With the C++ interface, no IDs are needed for

netCDF components, there is no need to specify types when creating attributes, and less indirection

is required for dealing with dimensions. However, the C++ interface is less mature and less-widely

used than the C interface, and the documentation for the C++ interface is less extensive, assuming

a familiarity with the netCDF data model and the C interface.

How does the FORTRAN interface di�er from the C interface?

It provides all the functionality of the C interface. The FORTRAN interface uses FORTRAN

conventions for array indices, subscript order, and strings. There is no di�erence in the on-disk

format for data written from the di�erent language interfaces. Data written by a C language

program may be read from a FORTRAN program and vice-versa.

Chapter 11: Answers to Some Frequently Asked Questions 139

How does the Perl interface di�er from the C interface?

It provides all the functionality of the C interface. The Perl interface uses Perl conventions for

arrays and strings. There is no di�erence in the on-disk format for data written from the di�erent

language interfaces. Data written by a C language program may be read from a Perl program and

vice-versa.

140 NetCDF 2.4 User's Guide

Appendix A: Units 141

AppendixA Units

The Unidata Program Center has developed a units library to convert between formatted and

binary forms of units speci�cations and perform unit algebra on the binary form. Though the units

library is self-contained and there is no dependency between it and the netCDF library, it is never-

theless useful in writing generic netCDF programs and we suggest you obtain it. The library and as-

sociated documentation is available from `http://www.unidata.ucar.edu/packages/udunits/'.

The following are examples of units strings that can be interpreted by the utScan() function of

the Unidata units library:

10 kilogram.meters/seconds2

10 kg-m/sec2

10 kg m/s^2

10 kilogram meter second-2

(PI radian)2

degF

100rpm

geopotential meters

33 feet water

milliseconds since 1992-12-31 12:34:0.1 -7:00

A unit is speci�ed as an arbitrary product of constants and unit-names raised to arbitrary

integral powers. Division is indicated by a slash `/'. Multiplication is indicated by whitespace, a

period `.', or a hyphen `-'. Exponentiation is indicated by an integer su�x or by the exponentiation

operators `^' and `**'. Parentheses may be used for grouping and disambiguation. The timestamp

in the last example is handled as a special case.

Arbitrary Galilean transformations (i.e. y = ax + b) are allowed. In particular, temperature

conversions are correctly handled. The speci�cation:

degF @ 32

indicates a Fahrenheit scale with the origin shifted to thirty-two degrees Fahrenheit (i.e. to zero

Celsius). Thus, the Celsius scale is equivalent to the following unit:

1.8 degF @ 32

Note that the origin-shift operation takes precedence over multiplication. In order of increasing

precedence, the operations are division, multiplication, origin-shift, and exponentiation.

utScan() understands all the SI pre�xes (e.g. \mega" and \milli") plus their abbreviations (e.g.

\M" and \m")

The function utPrint() always encodes a unit speci�cation one way. To reduce misunderstand-

ings, it is recommended that this encoding style be used as the default. In general, a unit is encoded

in terms of basic units, factors, and exponents. Basic units are separated by spaces, and any expo-

nent directly appends its associated unit. The above examples would be encoded as follows:

142 NetCDF 2.4 User's Guide

10 kilogram meter second-2

9.8696044 radian2

0.555556 kelvin @ 255.372

10.471976 radian second-1

9.80665 meter2 second-2

98636.5 kilogram meter-1 second-2

0.001 seconds since 1992-12-31 19:34:0.1000 UTC

(Note that the Fahrenheit unit is encoded as a deviation, in fractional kelvins, from an origin

at 255.372 kelvin, and that the time in the last example has been referenced to UTC.)

The database for the units library is a formatted �le containing unit de�nitions and is used to

initialize this package. It is the �rst place to look to discover the set of valid names and symbols.

The format for the units-�le is documented internally and the �le may be modi�ed by the user

as necessary. In particular, additional units and constants may be easily added (including variant

spellings of existing units or constants).

utScan() is case-sensitive. If this causes di�culties, you might try making appropriate addi-

tional entries to the units-�le.

Some unit abbreviations in the default units-�le might seem counter-intuitive. In particular,

note the following:

For Use Not Which Instead Means

Celsius `Celsius' `C' coulomb

gram `gram' `g' <standard free fall>

gallon `gallon' `gal' <acceleration>

radian `radian' `rad' <absorbed dose>

Newton `newton' or `N' `nt' nit (unit of photometry)

For additional information on this units library, please consult the manual pages that come with

the distribution.

Appendix B: File Format Speci�cation 143

AppendixB File Format Speci�cation

This appendix speci�es the netCDF �le format version 1. This format will be in use at least

through netCDF library version 3.0.

The format is �rst presented formally, using a BNF grammar notation. In the grammar, optional

components are enclosed between braces (`[' and `]'). Comments follow `//' characters. Nonter-

minals are in lower case, and terminals are in upper case. A sequence of zero or more occurrences

of an entity are denoted by `[entity ...]'.

The Format in Detail

netcdf_file := header data

header := magic numrecs dim_array gatt_array var_array

magic := 'C' 'D' 'F' VERSION_BYTE

VERSION_BYTE := '\001' // the file format version number

numrecs := NON_NEG

dim_array := ABSENT | NC_DIMENSION nelems [dim ...]

gatt_array := att_array // global attributes

att_array := ABSENT | NC_ATTRIBUTE nelems [attr ...]

var_array := ABSENT | NC_VARIABLE nelems [var ...]

ABSENT := ZERO ZERO // Means array not present (equivalent to

// nelems == 0).

nelems := NON_NEG // number of elements in following sequence

dim := name dim_size

name := string

dim_size := NON_NEG // If zero, this is the record dimension.

// There can be at most one record dimension.

attr := name nc_type nelems [values]

nc_type := NC_BYTE | NC_CHAR | NC_SHORT | NC_LONG | NC_FLOAT | NC_DOUBLE

144 NetCDF 2.4 User's Guide

var := name nelems [dimid ...] vatt_array nc_type vsize begin

// nelems is the rank (dimensionality) of the

// variable; 0 for scalar, 1 for vector, 2 for

// matrix, ...

vatt_array := att_array // variable-specific attributes

dimid := NON_NEG // Dimension ID (index into dim_array) for

// variable shape. We say this is a "record

// variable" if and only if the first

// dimension is the record dimension.

vsize := NON_NEG // Variable size. If not a record variable,

// the amount of space, in bytes, allocated to

// that variable's data. This number is the

// product of the dimension sizes times the

// size of the type, padded to a four byte

// boundary. If a record variable, it is the

// amount of space per record. The netCDF

// "record size" is calculated as the sum of

// the vsize's of the record variables.

begin := NON_NEG // Variable start location. The offset in

// bytes (seek index) in the file of the

// beginning of data for this variable.

data := non_recs recs

non_recs := [values ...] // Data for first non-record var, second

// non-record var, ...

recs := [rec ...] // First record, second record, ...

rec := [values ...] // Data for first record variable for record

// n, second record variable for record n, ...

// See the note below for a special case.

values := [bytes] | [chars] | [shorts] | [ints] | [floats] | [doubles]

string := nelems [chars]

bytes := [BYTE ...] padding

chars := [CHAR ...] padding

shorts := [SHORT ...] padding

ints := [INT ...]

Appendix B: File Format Speci�cation 145

floats := [FLOAT ...]

doubles := [DOUBLE ...]

padding := <0, 1, 2, or 3 bytes to next 4-byte boundary>

// In header, padding is with 0 bytes. In

// data, padding is with variable's fill-value.

NON_NEG := <INT with non-negative value>

ZERO := <INT with zero value>

BYTE := <8-bit byte>

CHAR := <8-bit ACSII/ISO encoded character>

SHORT := <16-bit signed integer, Bigendian, two's complement>

INT := <32-bit signed integer, Bigendian, two's complement>

FLOAT := <32-bit IEEE single-precision float, Bigendian>

DOUBLE := <64-bit IEEE double-precision float, Bigendian>

// tags are 32-bit INTs

NC_BYTE := 1 // data is array of 8 bit signed integer

NC_CHAR := 2 // data is array of characters, i.e., text

NC_SHORT := 3 // data is array of 16 bit signed integer

NC_LONG := 4 // data is array of 32 bit signed integer

NC_FLOAT := 5 // data is array of IEEE single precision float

NC_DOUBLE := 6 // data is array of IEEE double precision float

NC_DIMENSION := 10

NC_VARIABLE := 11

NC_ATTRIBUTE := 12

Computing File O�sets

To calculate the o�set (position within the �le) of a speci�ed data value, let external sizeof

be the external size in bytes of one data value of the appropriate type for the speci�ed variable,

nc type:

NC_BYTE 1

NC_CHAR 1

NC_SHORT 2

NC_LONG 4

NC_FLOAT 4

NC_DOUBLE 8

146 NetCDF 2.4 User's Guide

On open() (or endef()), scan through the array of variables, denoted var array above, and sum

the vsize �elds of "record" variables to compute recsize.

Form the the products of the dimension sizes for the variable from right to left, skipping the

leftmost (record) dimension for record variables, and storing the results in a product array for each

variable. For example:

Non-record variable:

dimension sizes: [5 3 2 7]

product: [210 42 14 7]

Record variable:

dimension sizes: [0 2 9 4]

product: [0 72 36 4]

At this point, the left-most product, when rounded up to the next multiple of 4, is the variable

size, vsize, in the grammar above. For example, in the non-record variable above, the value of the

vsize �eld is 212 (210 rounded up to a multiple of 4). For the record variable, the value of vsize is

just 72, since this is already a multiple of 4.

Let coord be an array of the coordinates of the desired data value, and o�set be the desired

result. Then o�set is just the �le o�set of the �rst data value of the desired variable (its begin �eld)

added to the inner product of the coord and product vectors times the size, in bytes, of each datum

for the variable. Finally, if the variable is a record variable, the product of the record number,

`coord[0]', and the record size, recsize is added to yield the �nal o�set value.

In pseudo-C code, here's the calculation of o�set:

for (innerProduct = i = 0; i < var.rank; i++)

innerProduct += product[i] * coord[i]

offset = var.begin;

offset += external_sizeof * innerProduct

if(IS_RECVAR(var))

offset += coord[0] * recsize;

So, to get the data value (in external representation):

lseek(fd, offset, SEEK_SET);

read(fd, buf, external_sizeof);

A special case: Where there is exactly one record variable, we drop the restriction that each

record be four-byte aligned, so in this case there is no record padding.

Examples

By using the grammar above, we can derive the smallest valid netCDF �le, having no dimensions,

no variables, no attributes, and hence, no data. A CDL representation of the empty netCDF �le is

Appendix B: File Format Speci�cation 147

netcdf empty { }

This empty netCDF �le has 32 bytes, as you may verify by using `ncgen -b empty.cdl' to gen-

erate it from the CDL representation. It begins with the four-byte "magic number" that identi�es

it as a netCDF version 1 �le: 'C', 'D', 'F', '\001'. Following are seven 32-bit integer zeros repre-

senting the number of records, an empty array of dimensions, an empty array of global attributes,

and an empty array of variables.

Below is an (edited) dump of the �le produced on a big-endian machine using the Unix command

od -xcs empty.nc

Each 16-byte portion of the �le is displayed with 4 lines. The �rst line displays the bytes in

hexadecimal. The second line displays the bytes as characters. The third line displays each group

of two bytes interpreted as a signed 16-bit integer. The fourth line (added by human) presents the

interpretation of the bytes in terms of netCDF components and values.

4344 4601 0000 0000 0000 0000 0000 0000

C D F 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

17220 17921 00000 00000 00000 00000 00000 00000

[magic number] [0 records] [0 dimensions (ABSENT)]

0000 0000 0000 0000 0000 0000 0000 0000

\0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

00000 00000 00000 00000 00000 00000 00000 00000

[0 global atts (ABSENT)] [0 variables (ABSENT)]

As a slightly less trivial example, consider the CDL

netcdf tiny {

dimensions:

dim = 5;

variables:

short vx(dim);

data:

vx = 3, 1, 4, 1, 5 ;

}

which corresponds to a 92-byte netCDF �le. The following is an edited dump of this �le:

4344 4601 0000 0000 0000 000a 0000 0001

C D F 001 \0 \0 \0 \0 \0 \0 \0 \n \0 \0 \0 001

17220 17921 00000 00000 00000 00010 00000 00001

[magic number] [0 records] [NC_DIMENSION] [1 dimension]

0000 0003 6469 6d00 0000 0005 0000 0000

\0 \0 \0 003 d i m \0 \0 \0 \0 005 \0 \0 \0 \0

00000 00003 25705 27904 00000 00005 00000 00000

[3 char name = "dim"] [size = 5] [0 global atts

0000 0000 0000 000b 0000 0001 0000 0002

148 NetCDF 2.4 User's Guide

\0 \0 \0 \0 \0 \0 \0 013 \0 \0 \0 001 \0 \0 \0 002

00000 00000 00000 00011 00000 00001 00000 00002

(ABSENT)] [NC_VARIABLE] [1 variable] [2 char name =

7678 0000 0000 0001 0000 0000 0000 0000

v x \0 \0 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 \0

30328 00000 00000 00001 00000 00000 00000 00000

"vx"] [1 dimension] [with ID 0] [0 attributes

0000 0000 0000 0003 0000 000c 0000 0050

\0 \0 \0 \0 \0 \0 \0 003 \0 \0 \0 \f \0 \0 \0 P

00000 00000 00000 00003 00000 00012 00000 00080

(ABSENT)] [type NC_SHORT] [size 12 bytes] [offset: 80]

0003 0001 0004 0001 0005 8001

\0 003 \0 001 \0 004 \0 001 \0 005 200 001

00003 00001 00004 00001 00005 -32767

[3] [1] [4] [1] [5] [fill]

Appendix C: Summary of C Interface 149

AppendixC Summary of C Interface

int nccreate (const char* filename, int cmode);

int ncopen (const char* filename, int mode);

int ncredef (int ncid);

int ncendef (int ncid);

int ncclose (int ncid);

int ncinquire (int ncid, int* ndims, int* nvars, int* natts, int* recdim);

int ncsync (int ncid);

int ncabort (int ncid);

int ncdimdef (int ncid, const char* name, long length);

int ncdimid (int ncid, const char* name);

int ncdiminq (int ncid, int dimid, char* name, long* length);

int ncdimrename (int ncid, int dimid, const char* name);

int ncvardef (int ncid, const char* name, nc_type datatype, int ndims,

const int dimids[]);

int ncvarid (int ncid, const char* name);

int ncvarinq (int ncid, int varid, char* name, nc_type* datatype, int* ndims,

int dimids[], int* natts);

int ncvarput1 (int ncid, int varid, const long coords[], const void* value);

int ncvarget1 (int ncid, int varid, const long coords[], void* value);

int ncvarput (int ncid, int varid, const long start[], const long count[],

const void* value);

int ncvarget (int ncid, int varid, const long start[], const long count[],

void* value);

int ncvarputg (int ncid, int varid, const long start[], const long count[],

const long stride[], const long imap[], const void* value);

int ncvargetg (int ncid, int varid, const long start[], const long count[],

const long stride[], const long imap[], void* value);

int ncvarrename (int ncid, int varid, const char* name);

int ncattput (int ncid, int varid, const char* name, nc_type datatype, int len,

const void* value);

int ncattinq (int ncid, int varid, const char* name, nc_type* datatype,

int* len);

int ncattget (int ncid, int varid, const char* name, void* value);

int ncattcopy (int incdf, int invar, const char* name, int outcdf, int outvar);

int ncattname (int ncid, int varid, int attnum, char* name);

int ncattrename (int ncid, int varid, const char* name, const char* newname);

int ncattdel (int ncid, int varid, const char* name);

int nctypelen (nc_type datatype);

int ncsetfill (int ncid, int fillmode);

int ncrecput(int ncid, long recnum, void* const datap[]);

int ncrecget(int ncid, long recnum, void* datap[]);

int ncrecinq(int ncid, int *nrecvars, int recvarids[], long recsizes[]);

150 NetCDF 2.4 User's Guide

Appendix D: Summary of FORTRAN Interface 151

AppendixD Summary of FORTRAN Interface

Input parameters are in upper case, output parameters are in lower case. The FORTRAN types

of all the parameters are listed alphabetically by parameter name below the subroutine and function

declarations.

INTEGER FUNCTION NCCRE (FILENAME,CLOBMODE, rcode)

INTEGER FUNCTION NCOPN (FILENAME,RWMODE, rcode)

SUBROUTINE NCREDF (NCID, rcode)

SUBROUTINE NCENDF (NCID, rcode)

SUBROUTINE NCCLOS (NCID, rcode)

SUBROUTINE NCINQ (NCID, ndims,nvars,natts,recdim,rcode)

SUBROUTINE NCSNC (NCID, rcode)

SUBROUTINE NCABOR (NCID, rcode)

INTEGER FUNCTION NCDDEF (NCID,DIMNAME,SIZE, rcode)

INTEGER FUNCTION NCDID (NCID,DIMNAME, rcode)

SUBROUTINE NCDINQ (NCID,DIMID, dimname,size,rcode)

SUBROUTINE NCDREN (NCID,DIMID,DIMNAME, rcode)

INTEGER FUNCTION NCVDEF (NCID,VARNAME,DATATYPE,NVDIMS,VDIMS, rcode)

INTEGER FUNCTION NCVID (NCID,VARNAME, rcode)

SUBROUTINE NCVINQ (NCID,VARID, varname,datatype,nvdims,vdims,nvatts,rcode)

SUBROUTINE NCVPT1 (NCID,VARID,INDICES,VALUE, rcode)

SUBROUTINE NCVP1C (NCID,VARID,INDICES, CHVAL, rcode)

SUBROUTINE NCVGT1 (NCID,VARID,INDICES, value, rcode)

SUBROUTINE NCVG1C (NCID,VARID,INDICES, chval, rcode)

SUBROUTINE NCVPT (NCID,VARID,START,COUNTS,VALUE, rcode)

SUBROUTINE NCVPTC (NCID,VARID,START,COUNTS,STRING,LENSTR, rcode)

SUBROUTINE NCVPTG (NCID,VARID,START,COUNTS,STRIDE,IMAP,VALUE, rcode)

SUBROUTINE NCVPGC (NCID,VARID,START,COUNTS,STRIDE,IMAP,STRING,rcode)

SUBROUTINE NCVGT (NCID,VARID,START,COUNTS, value,rcode)

SUBROUTINE NCVGTC (NCID,VARID,START,COUNTS, string,LENSTR,rcode)

SUBROUTINE NCVGTG (NCID,VARID,START,COUNTS,STRIDE,IMAP,value,rcode)

SUBROUTINE NCVGGC (NCID,VARID,START,COUNTS,STRIDE,IMAP,string,rcode)

SUBROUTINE NCVREN (NCID,VARID,VARNAME, rcode)

SUBROUTINE NCAPT (NCID,VARID,ATTNAME,DATATYPE,ATTLEN,VALUE, rcode)

SUBROUTINE NCAPTC (NCID,VARID,ATTNAME,DATATYPE,LENSTR,STRING, rcode)

SUBROUTINE NCAINQ (NCID,VARID,ATTNAME, datatype,attlen,rcode)

SUBROUTINE NCAGT (NCID,VARID,ATTNAME, value,rcode)

SUBROUTINE NCAGTC (NCID,VARID,ATTNAME, string,LENSTR,rcode)

SUBROUTINE NCACPY (INNCID,INVARID,ATTNAME,OUTNCID,OUTVARID, rcode)

SUBROUTINE NCANAM (NCID,VARID,ATTNUM, attname,rcode)

SUBROUTINE NCAREN (NCID,VARID,ATTNAME,NEWNAME, rcode)

SUBROUTINE NCADEL (NCID,VARID,ATTNAME, rcode)

INTEGER FUNCTION NCTLEN (DATATYPE, rcode)

SUBROUTINE NCPOPT (NCOPTS)

SUBROUTINE NCGOPT (ncopts)

INTEGER FUNCTION NCSFIL (NCID,FILLMODE, rcode)

152 NetCDF 2.4 User's Guide

INTEGER ATTLEN ! number of elements in an attribute vector

CHARACTER*(*) ATTNAME ! attribute name

INTEGER ATTNUM ! attribute number

CHARACTER CHVAL ! character value of variable or attribute

INTEGER CLOBMODE ! NCCLOB or NCNOCLOB

INTEGER COUNTS(NVDIMS) ! edge lengths of block of values

INTEGER DATATYPE ! type: NCBYTE, : : :, or NCDOUBLE

INTEGER DIMID ! dimension ID

CHARACTER*(*) DIMNAME ! dimension name

CHARACTER*(*) FILENAME ! name of netCDF file

INTEGER FILLMODE ! NCNOFILL or NCFILL, for setting fill mode

INTEGER IMAP(NVDIMS) ! index mapping vector

INTEGER INDICES(NDIMS) ! coordinates of a single element of a variable

INTEGER INNCID ! input netCDF ID

INTEGER INVARID ! input variable ID

INTEGER LENSTR ! length of character array value

INTEGER NATTS ! number of global attributes

INTEGER NCID ! netCDF ID, returned by NCCRE or NCOPN

INTEGER NCOPTS ! error-handling option flag

INTEGER NDIMS ! number of dimensions

CHARACTER*(*) NEWNAME ! new attribute name

INTEGER NVARS ! number of variables

INTEGER NVATTS ! number of attributes assigned to a variable

INTEGER NVDIMS ! number of dimensions in a variable

INTEGER OUTNCID ! output netCDF ID

INTEGER OUTVARID ! output variable ID

INTEGER RCODE ! returned error code, 0 if no errors

INTEGER RECDIM ! dimension ID of unlimited dimension

INTEGER RWMODE ! NCWRITE or NCNOWRIT

INTEGER SIZE ! dimension size

INTEGER START(NVDIMS) ! index of first value to be accessed

INTEGER STRIDE(NVDIMS) ! netCDF variable dimensional strides

CHARACTER*(*) STRING ! character array value of variable or attribute

DOUBLE VALUE ! double precision value of variable or attribute

REAL VALUE ! real value of variable or attribute

INTEGER VALUE ! integer value of variable or attribute

INTEGER VARID ! variable ID from NCVDEF or NCVID, or NCGLOBAL

CHARACTER*(*) VARNAME ! variable name

INTEGER VDIMS(NDIMS) ! dimension IDs for a variable, giving its shape

Function and Variable Index 153

Function andVariable Index

M
MAX NC NAME . 54

MAX VAR DIMS . 61

MAXNCNAM . 55

MAXVDIMS . 66

N
NC BYTE . 60

NC CHAR . 60, 105

NC CLOBBER . 38

NC DOUBLE . 60

NC FATAL . 33

NC FLOAT . 60

NC GLOBAL . 101

NC LONG. 60

NC NOCLOBBER . 38, 42

NC NOWRITE . 39

NC SHORT . 60

nc type . 61

NC UNLIMITED . 51

NC VERBOSE . 33

NC WRITE . 39

NCABOR . 47

NCABOR example .. 47

ncabort .. 47

ncabort example . 47

NCACPY . 112

NCACPY example . 114

NCADEL . 118

NCADEL example . 119

NCAGT . 109

NCAGT example .. 111

NCAGTC . 109

NCAGTC example . 111

NCAINQ . 107

NCAINQ example . 109

NCANAM example . 116

NCAPT . 105

NCAPT example .. 107

NCAPTC . 105

NCAPTC example . 107

NCAREN . 116

NCAREN example . 117

ncattcopy . 112

ncattcopy example .. 113

ncattdel .. 118

ncattdel example .. 118

ncattget .. 109

ncattget example .. 110

ncattinq .. 107

ncattinq example .. 108

ncattname example .. 115

ncattput .. 105

ncattput example .. 105

ncattrename . 116

ncattrename example .. 117

NCBYTE. 60

NCCHAR . 60

NCCLOB . 39

NCCLOS . 42

NCCLOS example .. 43

ncclose . 42

ncclose example . 43

NCCRE. 38

NCCRE example . 39

nccreate .. 38

nccreate example . 38

NCDDEF . 51

NCDDEF example .. 53

NCDID. 53

NCDID example . 54

ncdimdef .. 51

ncdimdef example . 52

ncdimid . 53

ncdimid example . 53

ncdiminq .. 54

ncdiminq example . 55

ncdimrename.. 56

ncdimrename example .. 56

NCDINQ . 54

154 NetCDF 2.4 User's Guide

NCDINQ example .. 55

NCDOUBLE . 60

NCDREN . 56

NCDREN example .. 57

ncdump . 130

ncendef .. 41

ncendef example . 42

NCENDF . 41

NCENDF example .. 42

ncerr . 33

NCFATAL . 33

NCFLOAT . 60

ncgen . 129

NCGLOBAL . 109

NCGOPT . 33

NCINQ. 44

NCINQ example .. 45

ncinquire .. 44

ncinquire example . 44

NCLONG . 60

NCNOCLOB . 39

NCNOWRIT . 40

ncopen . 39

ncopen example .. 39

NCOPN. 39

NCOPN example .. 40

ncopts . 33

NCPOPT. 33

ncrecget .. 89

ncrecget example . 90

ncrecinq .. 98

ncrecinq example . 98

ncrecput .. 77

ncrecput example . 78

ncredef .. 40

ncredef example . 41

NCREDF . 40

NCREDF example .. 41

ncsetfill .. 48

ncsetfill example . 49

NCSFIL . 48

NCSFIL example .. 50

NCSHORT . 60

NCSNC. 45

NCSNC example . 46

ncsync . 45

ncsync example .. 46

NCTLEN . 96

NCTLEN example .. 97

nctypelen .. 96

nctypelen example .. 96

NCUNLIM . 52

ncvardef .. 60

ncvardef example . 61

ncvarget .. 81

ncvarget example . 83

ncvarget1 .. 79

ncvarget1 example .. 80

ncvargetg .. 85

ncvargetg example .. 86

ncvarid . 63

ncvarid example . 63

ncvarinq .. 64

ncvarinq example . 65

ncvarput .. 69

ncvarput example . 70

ncvarput1 .. 67

ncvarput1 example .. 68

ncvarputg .. 73

ncvarputg example .. 75

ncvarrename.. 94

ncvarrename example .. 95

NCVDEF . 60

NCVDEF example .. 62

NCVERBOS . 33

NCVG1C . 79

NCVGGC . 85

NCVGT. 81

NCVGT example . 84

NCVGT1 . 79

NCVGT1 example .. 81

NCVGTC . 81

NCVGTG . 85

NCVGTG example .. 88

NCVID. 63

NCVID example . 64

Function and Variable Index 155

NCVINQ . 64

NCVINQ example .. 66

NCVP1C . 67

NCVPGC . 73

NCVPT. 69

NCVPT example .. 72

NCVPT1 . 67

NCVPT1 example .. 69

NCVPTC . 69

NCVPTG . 73

NCVPTG example .. 77

NCVREN . 94

NCVREN example .. 95

NCWRITE . 40

NETCDF FFIOSPEC . 123

R
rcode . 33

U
utPrint . 141

utScan . 141

156 NetCDF 2.4 User's Guide

General Index 157

General Index

A
abnormal termination . 28

aborting de�ne mode . 32

aborting de�nitions . 47

abstract data type . 5

access by key . 10

add o�set attribute . 102

adding attributes . 31, 40

adding dimensions . 31, 40

adding variables . 31, 40

ancillary data . 17, 18

appending data 15, 25, 51, 59, 78, 122, 126, 135

archive formats . 7

array access . 81

array section . 22

array-section access example . 23

array-section corner . 22

array-section edge . 22

array-section stride . 22

ASCII characters . 21

attribute conventions . 18, 101

attribute deletion . 114

attribute ID . 114

attribute inquire . 107

attribute length 17, 91, 101, 108, 128

attribute name. 13

attribute names . 101, 105

attribute numbers. 114, 115

attribute operations . 101

attribute space . 101

attribute type 17, 101, 105, 106, 108, 128

attribute values 101, 105, 109, 110, 111

attribute variable ID 109, 110, 115, 118

attributes . 17, 28, 31, 101

attributes vs. variables . 18

availability of netCDF software. 5

B
backing out of de�nitions . 47

bits for each data type . 60

bu�ers. 122

bug reporting . 138

byte CDL type . 16

byte constant . 128

byte data type . 127

byte type . 21, 128

byte vs. character . 94

C
C interface . 3

C interface summary. 149

C, generation of . 129

C format attribute . 103

C++ interface . 3, 138

canceling de�nitions . 47

CANDIS . 8

CDF Description Language . 129

CDL . 13, 129

CDL attribute initialization . 128

CDL attributes . 126

CDL constants . 128

CDL data types . 127

CDL dimensions . 126

CDL example . 13, 125

CDL names . 15, 126

CDL notation . 14, 17

CDL reserved words. 21, 127

CDL syntax . 125

CDL variable declarations . 16

CDL variable initialization . 126

CDL variables . 126

changeable dimension sizes . 10

changes since previous release . 136

char CDL type. 16

char data type . 127

char type . 21

character constant . 128

character string data . 91

character strings . 91

character type . 128

158 NetCDF 2.4 User's Guide

character vs. byte . 94

character-position dimension 91, 93

character-string attributes . 91

character-string values . 93

closing a netCDF �le. 29, 42, 46, 47

closing �les . 28

commercial software for netCDF data 137

common netCDF calls . 27

compiling example . 34

compiling with the netCDF library 34

compression . 10

computing �le o�sets . 145

concurrency . 122, 135

concurrency support . 10

concurrent access limitations . 10

conventional attributes . 17, 18, 101

conventions . 7

Conventions attribute . 104

conventions in examples. 37

coordinate o�set vector . 24

coordinate variable indexing . 10

coordinate variables . 16, 126

coordinates . 16

copying attributes . 112

correspondence between data types. 60

Cray Computers . 123

Cray implementation . 123

creating a dimension . 51

creating a netCDF �le . 27, 38, 47

creating a variable . 60

creating attributes . 105

D
data compression . 102

data loss . 28

data mode . 32, 41, 45, 46, 47, 101

data model . 13

data model limitations . 9

data order . 23, 24

data packing. 102

data resolution . 102

data section . 126

data sizes . 96

data storage . 13

data structures . 26

data types . 16, 61

data types, correspondence between 60

database management systems . 5

default error handling . 32

default �ll values . 94, 127

de�ne mode 32, 40, 41, 45, 46, 47, 51, 60, 101

de�ning attributes . 105

de�ning coordinate systems . 16

deleting a netCDF �le . 47

deleting attributes . 31, 40, 118

di�erences between attributes and variables 18

dimension ID . 51

dimension IDs 29, 31, 51, 53, 54, 60

dimension inquire . 54

dimension name . 13, 51

dimension names 15, 51, 53, 54, 55, 56

dimension size . 15, 51, 54

dimensions . 15, 17, 29, 31, 51

direct access . 135

discipline-speci�c conventions . 104

double CDL type . 16

double constant . 129

double type . 21, 127, 128, 129

E
e�ciency . 6, 25, 28, 29, 45, 48, 119

empty netCDF �le . 147

environment variable . 123

error conditions . 37

error handling . 32, 138

error messages . 32, 33

error options . 33

error returns . 32

example conventions . 37

example, compiling . 34

example, linking . 34

examples . 37

expense of operations . 121

external data representation (XDR) 6

General Index 159

F
FAQ, abbreviated . 133

fatal errors . 33

FFIO library . 124

�le format speci�cation . 143

�le format version . 143

�le o�sets of data . 145

�le size . 121

�le size limitation . 10

�le structure . 119, 136

�ll values . 94, 103

FillValue attribute . 103

�xed-length character strings . 91

�xed-size data part . 121

�xed-size strings . 92, 93

Flexible File I/O . 123

oat CDL type . 16

oat constant . 129

oat data type . 127

oat type . 21, 128, 129

oating-point conversion costs . 123

ushing . 122

format . 119, 136

format examples . 146

FORTRAN interface . 3, 138

FORTRAN interface summary . 151

FORTRAN, generation of . 129

FORTRAN format attribute . 104

freely available software for netCDF data 137

Frequently Asked Questions. 133

FTP access to netCDF software 135

function prototypes . 37

future changes planned . 5, 21

Future Plans. 10

G
generating code . 129

generating netCDF �les . 129

generic applications . . . 17, 18, 28, 29, 51, 101, 104, 114

generic �lters . 104

getting attribute name . 114

getting attribute values . 109

getting character string data . 91

getting dimension ID . 53

getting dimension name . 54

getting dimension size . 54

getting variable data . 79, 85

getting variable name . 64

getting variable shape . 64

getting variable type . 64

global attribute example . 18

global attributes . 17, 101

global attributes in CDL . 126

grammar for �le format . 143

grouping variables . 26

H
handling units . 141

HDF. 2

header part . 121

history. 7

history attribute . 104

HTML version of documentation . 3

I
I/O, Flexible File . 123

IEEE
oating-point . 6, 21

include statement . 34

INCLUDE statement . 34

index mapping vector . 22

index order . 23

index variables . 26

indexing values . 26

inner product . 24

inquire about a netCDF �le . 44

inquire functions . 29

inquiring about records . 98

interface descriptions . 37

K
key access . 10

known names . 28

L
language interfaces . 24

languages supported . 5

160 NetCDF 2.4 User's Guide

largest �le size . 10

level of support . 2

library installation . 34

library location . 34

limitations of netCDF . 9

linked lists . 26

linking example . 34

linking with the netCDF library . 34

long CDL type . 16

long constant . 128

long type . 21, 127, 128

long name attribute . 102

M
mailing list . 136

mapped array section . 22

MAX NC DIMS . 51

maximum dimensions . 60

maximum name length . 65, 66, 115

maximum number of dimensions 51

maximum number of records . 54

maximum variable dimensions 60, 61, 62, 65, 66

metadata . 17

missing values . 94, 102, 103

missing value . 103

MSDOS restrictions . 69, 82

multiple unlimited dimensions . 10

multiple writers . 10

N
name conventions . 13

names of attributes . 13

names of dimensions . 13

names of variables . 13

NASA CDF. 7

NC BYTE type speci�er . 16

NC CHAR type speci�er . 16

NC DOUBLE type speci�er . 16

NC FLOAT type speci�er . 16

NC LONG type speci�er . 16

NC SHORT type speci�er . 16

NCSA . 2

nested arrays . 10

nested data structures . 9

netCDF . 5

netCDF attributes . 13

netCDF components . 13

netCDF conventions WWW site . 7

netCDF data model. 13

netCDF data types . 21, 96

netCDF dimensions . 13

netCDF disk representation . 91

netCDF �le creation . 27, 38

netCDF �le extension . 129

netCDF �le format . 143

netCDF �le name . 37

netCDF �le size . 91, 92, 93

netCDF �le structure . 119

netCDF format . 119

netCDF handle . 37

netCDF ID . 37, 42

netCDF implementation . 51

netCDF library use . 27

netCDF limitations . 9

netCDF mailing list . 136

netCDF names . 15

netCDF operations . 37

netCDF software distribution . 135

netCDF utilities . 125, 137

netCDF variables . 13

netCDF World Wide Web site . 3

netCDF, development of . 7

network Common Data Form Language (CDL) 13

network-transparent data . 3, 135

no�ll mode . 48

NSSDC CDF . 7

number of dimensions . 44

number of global attributes . 44

number of records written . 54

number of variables . 44

numeric values . 93

O
o�sets of data . 145

opening a netCDF �le . 29, 39

operating systems . 137

General Index 161

operating systems supported . 5

optimizations . 123

order of data . 24

other software . 138

other software for netCDF access 137

P
packing . 10

parts of a netCDF �le . 121

performance 6, 25, 28, 29, 30, 45, 48, 119

perl interface . 3, 136, 139

physical format . 136

plans . 10

platform-speci�c optimizations . 123

platforms . 137

pointers . 26

portability . 5, 123, 137

primitive netCDF types . 21

print formats . 103

problem reports . 138

prototypes for netCDF functions 149

purpose of netCDF . 3

putting character string data . 91

putting variable data . 67, 69, 73, 81

R
ragged arrays . 10

reading a netCDF �le . 28

reading a record . 89

reading character string data . 91

reading data . 79, 81, 85, 91

record dimension . 15, 51, 54, 59

record I/O . 25, 77, 89, 98

record variables . 15, 16, 25, 30

record-data part . 121

record-oriented access . 25

recording data history . 104

records . 25, 51, 54

relational database systems . 5

removing attributes . 118

renaming attributes . 31, 40, 116

renaming dimensions . 31, 40, 56

renaming variables. 31, 40, 94

reporting bugs . 138

restoring old de�nitions . 32

S
sampling interval . 22

scalar variables . 15

scale factor attribute . 102

scaling data . 102

scienti�c data access . 138

searching past problem reports . 138

SeaSpace CDF . 8

self-describing data . 3, 135

shape of a netCDF variable . 15

shared access . 45, 135

short CDL type . 16

short constant . 128

short type . 21, 127, 128

signed . 21, 103

signedness . 103

sizes of data types . 60

smallest netCDF �le . 147

sparse matrices . 26

specifying variable shapes . 15

stdio . 122

stride . 22

string length, actual . 93

string length, declared . 93

subsampled array section . 22

subscript order . 23

support . 2

suppressing error messages . 32

symbol table . 13

synchronize a netCDF �le . 45

T
title attribute . 104

transparent data packing. 10

trees . 26

type lengths . 96

type-safe interfaces . 10

types, data, correspondence between 60

typical netCDF calls . 27

162 NetCDF 2.4 User's Guide

U
udunits software library . 141

UNICOS . 123

Unidata . 1

Unidata CDF Workshops . 8

units attribute . 17, 18, 101

units attribute conventions . 141

units syntax conventions . 141

unlimited dimension . 15, 51, 54, 59

unlimited dimension ID . 44, 45

unlimited dimension limitation . 10

unsigned . 21, 103

usage . 136

utilities for netCDF data . 137

V
valid range . 102

valid max attribute . 102

valid min attribute . 102

valid range attribute . 102

variable attributes. 15, 17

variable characteristics . 59

variable data types . 15, 16

variable data values . 15

variable ID . 59

variable IDs . 31

variable inquire . 64

variable name . 13

variable o�sets . 121

variable operations . 59

variable record sizes. 10

variable shape . 15, 59

variable size . 16

variable symbol table . 13

variable type. 59

variable values . 59

variable, environment . 123

variable-length strings . 91, 92, 93

variables . 15

variables vs. attributes . 18

W
where to get netCDF . 135

who else uses netCDF . 136

World Wide Web netCDF information 3

write errors . 33

writing a record . 77

writing character string data . 91

writing data . 67, 69, 73, 91

WWW access to netCDF . 135

WWW netCDF information . 136

WWW netCDF site . 3

X
XDR . 6, 8, 21, 26, 121, 122, 123

XDR errors . 33

XDR replacement planned . 10

Z
zero byte . 92

i

Table of Contents

Foreword . 1

Summary. 3

1 Introduction . 5

1.1 The NetCDF Interface . 5

1.2 NetCDF is Not a Database Management System 5

1.3 File Format . 6

1.4 What about Performance? . 6

1.5 Is NetCDF a Good Archive Format? . 7

1.6 Creating Self-Describing Data conforming to Conventions 7

1.7 Background and Evolution of the NetCDF Interface. 7

1.8 What's New Since the Previous Release? . 9

1.9 Limitations of NetCDF . 9

1.10 Future Plans for NetCDF . 10

References . 10

2 Components of a NetCDF File 13

2.1 The NetCDF Data Model . 13

2.1.1 Naming Conventions . 13

2.1.2 network Common Data Form Language (CDL) 13

2.2 Dimensions . 15

2.3 Variables . 15

2.3.1 Coordinate Variables . 16

2.4 Attributes . 17

2.5 Di�erences between Attributes and Variables . 18

3 Data . 21

3.1 NetCDF Data Types . 21

3.2 Data Access . 21

3.2.1 Forms of Data Access . 22

3.2.2 An Example of Array-Section Access 23

3.2.3 More on General Array Section Access 24

3.2.4 Record-Oriented Access . 25

3.3 Data Structures . 26

ii NetCDF 2.4 User's Guide

4 Use of the NetCDF Library . 27

4.1 Creating a NetCDF File . 27

4.2 Reading a NetCDF File with Known Names . 28

4.3 Reading a netCDF File with Unknown Names 29

4.4 Adding New Dimensions, Variables, Attributes 31

4.5 Error Handling. 32

4.6 Compiling and Linking with the NetCDF Library 34

5 Files . 37

5.1 NetCDF Library Interface Descriptions . 37

5.2 Create a NetCDF �le: nccreate and NCCRE . 38

5.3 Open a NetCDF File for Access: ncopen and NCOPN 39

5.4 Put Open NetCDF File into De�ne Mode: ncredef and NCREDF . . 40

5.5 Leave De�ne Mode: ncendef and NCENDF. 41

5.6 Close an Open NetCDF File: ncclose and NCCLOS 42

5.7 Inquire about an Open NetCDF File: ncinquire and NCINQ 44

5.8 Synchronize an Open NetCDF File to Disk: ncsync and NCSNC . . 45

5.9 Back Out of Recent De�nitions: ncabort and NCABOR 47

5.10 Set Fill Mode for Writes: ncset�ll and NCSFIL 48

6 Dimensions . 51

6.1 Create a Dimension: ncdimdef and NCDDEF 51

6.2 Get a Dimension ID from Its Name: ncdimid and NCDID 53

6.3 Inquire about a Dimension: ncdiminq and NCDINQ 54

6.4 Rename a Dimension: ncdimrename and NCDREN 56

7 Variables . 59

7.1 Language Types Corresponding to NetCDF Data Types 60

7.2 Create a Variable: ncvardef and NCVDEF . 60

7.3 Get a Variable ID from Its Name: ncvarid and NCVID 63

7.4 Get Information about a Variable from Its ID: ncvarinq and NCVINQ

. 64

7.5 Write a Single Data Value: ncvarput1, NCVPT1, and NCVP1C . . 67

7.6 Write an Array of Values: ncvarput and NCVPT(C) 69

7.7 Write a Subsampled Or Mapped Array of Values: ncvarputg,

NCVPTG, and NCVPGC . 73

7.8 Put a Record: ncrecput . 77

7.9 Read a Single Data Value: ncvarget1, NCVGT1, and NCVG1C . . . 79

7.10 Read an Array of Values: ncvarget and NCVGT(C) 81

7.11 Read a Subsampled Or Mapped Array of Values: ncvargetg,

NCVGTG and NCVGGC . 85

7.12 Get a Record: ncrecget . 89

iii

7.13 Reading and Writing Character String Values 91

C Interface . 92

FORTRAN Interface . 93

7.14 Fill Values . 94

7.15 Rename a Variable: ncvarrename and NCVREN 94

7.16 Get Number of Bytes for a Data Type: nctypelen and NCTLEN . . 96

7.17 Get Information About Record Variables: ncrecinq 98

8 Attributes . 101

8.1 Attribute Conventions . 101

8.2 Create an Attribute: ncattput, NCAPT, and NCAPTC 105

8.3 Get Information about an Attribute: ncattinq and NCAINQ 107

8.4 Get Attribute's Values: ncattget and NCAGT(C) 109

8.5 Copy Attribute from One NetCDF to Another: ncattcopy and

NCACPY . 112

8.6 Get Name of Attribute from Its Number: ncattname and NCANAM

. 114

8.7 Rename an Attribute: ncattrename and NCAREN 116

8.8 Delete an Attribute: ncattdel and NCADEL 118

9 NetCDF File Structure and Performance 121

9.1 Parts of a NetCDF File . 121

9.2 The XDR Layer . 122

9.3 General XDR Considerations . 122

9.4 UNICOS Optimization . 123

10 NetCDF Utilities . 125

10.1 CDL Syntax . 125

10.2 CDL Data Types . 127

10.3 CDL Notation for Data Constants . 128

10.4 ncgen . 129

Examples. 130

10.5 ncdump . 130

Examples. 132

11 Answers to Some Frequently Asked Questions
. 135

What Is netCDF? . 135

How do I get the netCDF software package? . 135

Is there any access to netCDF information on the World Wide Web? . . 136

What has changed since the previous release? . 136

Is there a mailing list for netCDF discussions and questions? 136

iv NetCDF 2.4 User's Guide

Who else uses netCDF? . 136

What is the physical format for a netCDF �les? . 136

What does netCDF run on? . 137

What other software is available for netCDF data? 137

What other formats are available for array-oriented data? 138

Why do netCDF calls just exit on errors instead of returning an error

indicator? . 138

How do I make a bug report? . 138

How do I search through past problem reports? . 138

How does the C++ interface di�er from the C interface? 138

How does the FORTRAN interface di�er from the C interface? 138

How does the Perl interface di�er from the C interface? 139

Appendix A Units . 141

Appendix B File Format Speci�cation. 143

The Format in Detail. 143

Computing File O�sets . 145

Examples . 146

Appendix C Summary of C Interface 149

Appendix D Summary of FORTRAN Interface . . . 151

Function and Variable Index . 153

General Index . 157

